chapter 9 competition
play

Chapter 9: Competition From: Gause 1934 Competitive exclusion and - PowerPoint PPT Presentation

Chapter 9: Competition From: Gause 1934 Competitive exclusion and co-existence Asterionella formosa Synedra ulna Together <latexit sha1_base64="(nul)">(nul)</latexit> <latexit


  1. Chapter 9: Competition From: Gause 1934

  2. Competitive exclusion and co-existence Asterionella formosa Synedra ulna Together

  3. <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> Competitive exclusion: several consumers using 1 resource Closed system with fixed amount of resource K : n d N i R 0 i = b i K X F = K − e i N i , d t = N i ( b i F − d i ) , for i = 1 , 2 , . . . , n , d i i Since for each species ¯ F = d i /b i = K/R 0 i they have to exclude each other d 1 b i d 1 b i > b 1 b i ¯ F − d i > 0 or b i − d i > 0 or > 1 or , (9.3) b 1 d i b 1 d i d 1

  4. Competitive exclusion: several consumers using 1 resource Closed system with fixed amount of resource K : n d N i X F = K − e i N i , d t = N i ( b i F − d i ) , for i = 1 , 2 , . . . , n , i Carrying capacity of one species: N i = K − d i /b i = K (1 − 1 /R 0 i ) K i = ¯ F = K − e i ¯ ¯ with N i = e i e i

  5. Nullclines for 2-D closed system n d N i X F = K − e i N i , d t = N i ( b i F − d i ) , for i = 1 , 2 , . . . , n , (9.1) i F = K - e 1 N 1 - e 2 N 2 N 2 = K − d 1 /b 1 − e 1 N 1 = K (1 − 1 /R 0 1 ) − e 1 N 2 = K (1 − 1 /R 0 2 ) − e 1 N 1 and N 1 , (9.4) e 2 e 2 e 2 e 2 e 2 e 2

  6. Nullclines for 2-D closed system n d N i X F = K − e i N i , d t = N i ( b i F − d i ) , for i = 1 , 2 , . . . , n , (9.1) i F = K - e 1 N 1 - e 2 N 2 N 2 = K − d 1 /b 1 − e 1 N 1 = K (1 − 1 /R 0 1 ) − e 1 N 2 = K (1 − 1 /R 0 2 ) − e 1 N 1 and N 1 , (9.4) e 2 e 2 e 2 e 2 e 2 e 2 N1 N2 ● ● ● K 2 Density N 2 ● ● ● ● ● ● K 1 N 1 Time

  7. <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> Competitive exclusion when birth rate is saturated (closed) ✓ b i F n ◆ d N i X F = K − e i N i , d t = N i h i + F − d i i Carrying capacity of one species, and the corresponding steady state for F : N i = K ( R 0 i − 1) − h i h i ¯ ¯ with F = e i ( R 0 i − 1) R 0 i − 1 Thus the consumer with the lowest h i over R 0 -1 ratio depletes the resource most. _ At the lowest F the other species cannot invade: b j ¯ F h j ¯ F > d j or F > h j + ¯ R 0 j − 1

  8. Competition in open systems (one resource) ✓ b i c i R n ◆ d R d N i X = s − dR − R c i N i with d t = N i h i + c i R − d i or d t i =1 ✓ b i R n ◆ d R c i N i d N i X = s − dR − R with d t = N i h i + R − d i or d t h i + R i =1 ✓ b i c i R n ◆ d R d N i X = rR (1 − R/K ) − R c i N i with d t = N i h i + c i R − d i or d t i =1 ✓ b i R n ◆ d R c i N i d N i X = rR (1 − R/K ) − R with d t = N i h i + R − d i , d t h i + R i =1 Exclusion because h i /c i h i R 0 i = b i R ⇤ R ⇤ i = or i = R 0 i − 1 , where , R 0 i − 1 d i

  9. (c) (d) ● ● ● ● ● N2 N2 ● ● ● ● ● ● N1 N1 (0,0,0) (0,0,0) % % % R ∗ R ∗ % R R 1 1 — R R ∗ R ∗ 2 2 — N 1 ● ● ● — N 2

  10. Quasi steady state to reveal interactions: resource with source ✓ b i c i R n ◆ d R d N i X = s − dR − R c i N i with d t = N i h i + c i R − d i d t i =1 n ✓ ◆ s ˆ d + P c i N i R = , d N i b i s β i ⇣ ⌘ ⇣ ⌘ s + ( h i /c i )( d + P c j N j ) � d i 1 + P N j /k j d t = N i = N i � d i K i = s � d s � d ⇣ ⌘ R 0 i � 1 = h i c i c i R ∗ c i i

  11. 6 ✓ ◆ X Quasi steady state to reveal interactions: logistic resource ✓ b i c i R n ◆ d R d N i X = rR (1 − R/K ) − R c i N i with d t = N i h i + c i R − d i d t i =1 ✓ ◆ ✓ ◆ 1 � 1 ˆ X R = K c i N i r b i ( r � P c j N j ) d N i ⇣ ⌘ ( h i /c i )( r/K ) + r � P c j N j d t = N i � d i N i = r 1 � R ∗ ⇣ ⌘ ¯ i c i K

  12. (a) (b) Lotka-Volterra competition model 1 A 12 ● ● ● ● ● ● 1 1 N 2 ● ● ● ● ● ● n 1 d N i ⇣ ⌘ A 12 X d t = r i N i 1 � A ij N j ● ● ● ● ● ● j =1 1 1 1 1 A 21 A 21 (c) (d) 1 − A 11 1 N 2 = N 1 = (1 − N 1 ) 1 A 12 A 12 A 12 A 12 ● ● ● ● ● ● 1 − A 21 1 1 N 2 N 2 = N 1 = (1 − A 21 N 1 ) A 22 A 22 ● ● ● ● ● ● 1 A 12 ● ● ● ● ● ● 1 1 1 1 A 21 A 21 N 1 N 1

  13. Several consumers on two substitutable resources P j c ij R j d N i d R j ⇣ ⌘ X d t = N i , d t = s j � d j R j � c ij N i R j β i � δ i h i + P j c ij R j i Consumer nullcline depends on resources only: c i 2 ( R 0 i � 1) � c i 1 h i R 2 = R 1 Straight line with slope - c i1 / c i2 c i 2 where R 0i = β i / δ i 0 i i i h i , R ∗ ij = Starting and ending at critical resource density: c ij ( R 0 i − 1) = R ∗ � c i − R i 2 � c i 1 R 2 = R ∗ c i 2 R 1 Simplified nullcline:

  14. Several consumers with same diet c i1 and c i2 . (a) (b) R ∗ 31 N1 N2 N3 R ∗ Tilman diagram QSSA 22 R ∗ N3 12 - c i1 / c i2 ● ● ● R 2 ● ● ● (0,0,0) N2 — N 1 0 N1 — N 2 0 R ∗ R ∗ R ∗ — N 3 11 21 31 ● ● ● R 1 h 1 < h 2 < h 3

  15. (a) (b) Several consumers having N1 N1 N2 N2 N3 different diets c i1 and c i2 . R ∗ K 2 Tilman diagram QSSA 32 N 2 R ∗ 22 ● ● Generically only one intersection R 2 ● point between all nullclines: K 1 R ∗ R ∗ R ∗ 11 31 21 maximally two co-existing R 1 N 1 species on two resources. (c) (d) N1 N2 N3 N3 Lowest intersection not invadable QSSA QSSA K 3 K 3 by other consumers N 3 N 3 (but no guarantee that this is a steady state). ● K 1 K 2 N 1 N 2

  16. Essential resources Several consumers: d N i c ij R j d R j ⇣ ⌘ Y X d t = N i , d t = s j − d j R j − c ij N i R j β i − δ i h ij + c ij R j j i Two consumers using two resources: d N 1 c 11 R 1 c 12 R 2 ⇣ ⌘ = N 1 β 1 − δ 1 d t h 11 + c 11 R 1 h 12 + c 12 R 2 d N 2 c 21 R 1 c 22 R 2 ⇣ ⌘ = N 2 β 2 − δ 2 d t h 21 + c 21 R 1 h 22 + c 22 R 2

  17. Essential resources (a) (b) N1 N1 N2 N2 N3 N3 s 2 s 2 ● ● d 2 d 2 d N 1 c 11 R 1 c 12 R 2 ⇣ ⌘ = N 1 β 1 − δ 1 R 2 R 2 d t h 11 + c 11 R 1 h 12 + c 12 R 2 d N 2 c 21 R 1 c 22 R 2 ⇣ ⌘ = N 2 β 2 − δ 2 d t h 21 + c 21 R 1 h 22 + c 22 R 2 ● ● R ∗ R ∗ 32 32 R ∗ R ∗ 22 12 R ∗ R ∗ 12 22 Asymptotes defined by letting s 1 s 1 R ∗ ↑ R ∗ R ∗ ↑ R ∗ 21 31 11 31 d 1 d 1 R ∗ R ∗ R 1 R 1 11 21 or R 1 ! 1 or R 2 ! 1 , i (c) (d) N1 N1 N2 N2 QSSA of (a) QSSA of (b) K 2 K 2 t c 11 > c 12 , c 22 > c 21 and c 31 ' c 32 , N 2 N 2 r two on resource two, and consumer th ● ● Local steepness defines stability K 1 K 1 N 1 N 1

  18. 4-dimensional Jacobian d R 1 = s 1 − d 1 R 1 − c 11 N 1 R 1 − c 21 N 2 R 1 , d t d R 2 = s 2 − d 2 R 2 − c 12 N 1 R 2 − c 22 N 2 R 2 , d t et c 11 > c 12 and c 22 > c 21 , d N 1 c 11 R 1 + c 12 R 2 ⇣ ⌘ = N 1 , β 1 − δ 1 d t h 1 + c 11 R 1 + c 12 R 2 d N 2 c 21 R 1 + c 22 R 2 ⇣ ⌘ = N 2 , β 2 − δ 2 d t h 2 + c 21 R 1 + c 22 R 2   � d 1 � c 11 ¯ N 1 � c 21 ¯ � c 11 ¯ � c 21 ¯   N 2 0 R 1 R 1 ∂ R 1 R 0 ∂ N 2 R 0 . . . 1 1 � d 2 � c 12 ¯ N 1 � c 22 ¯ � c 12 ¯ � c 22 ¯ . ... 0 N 2 R 2 R 2 .   J =  =   .    Φ 1 c 11 Φ 1 c 12 0 0   ∂ R 1 N 0 ∂ N 2 N 0 . . . 2 2 Φ 2 c 21 Φ 2 c 22 0 0 where β 1 h 1 ¯ β 2 h 2 ¯ N 1 N 2 Φ 1 = and Φ 2 = ( h 1 + c 11 ¯ R 1 + c 12 ¯ ( h 2 + c 21 ¯ R 1 + c 22 ¯ R 2 ) 2 R 2 ) 2   0 − ρ 1 − γ 11 − γ 21 λ 4 + a 3 λ 3 + a 2 λ 2 + a 1 λ + a 0 = 0 0 − ρ 2 − γ 12 − γ 22   J =   0 0 φ 11 φ 12   0 0 φ 21 φ 22 a 0 = ( γ 11 γ 22 − γ 12 γ 21 )( φ 11 φ 22 − φ 12 φ 21 )

  19. 4-dimensional Jacobian: essential resources ¯ ¯ R 2 R 1 ! d N 1 c 11 R 1 c 12 R 2 Φ 1 Φ 1 ✓ ∂ R 1 N 0 ◆ ✓ φ 11 ◆ ⇣ ⌘ ∂ R 2 N 0 φ 12 = N 1 β 1 � δ 1 1+ ¯ 1+ ¯ R 1 /H 11 R 2 /H 12 1 1 d t h 11 + c 11 R 1 h 12 + c 12 R 2 = = ¯ ¯ R 2 R 1 ∂ R 1 N 0 ∂ R 2 N 0 φ 21 φ 22 d N 2 c 21 R 1 c 22 R 2 Φ 2 Φ 2 ⇣ ⌘ 2 2 = N 2 β 2 � δ 2 1+ ¯ 1+ ¯ R 1 /H 21 R 2 /H 22 d t h 21 + c 21 R 1 h 22 + c 22 R 2 where H ij = h ij /c ij and β 1 ¯ β 2 ¯ N 1 N 2 Φ 1 = and Φ 2 = R 2 ) . ( H 11 + ¯ R 1 )( H 12 + ¯ ( H 21 + ¯ R 1 )( H 22 + ¯ R 2 )   0 − ρ 1 − γ 11 − γ 21 λ 4 + a 3 λ 3 + a 2 λ 2 + a 1 λ + a 0 = 0 0 − ρ 2 − γ 12 − γ 22   J =   0 0 φ 11 φ 12   a 0 = ( γ 11 γ 22 − γ 12 γ 21 )( φ 11 φ 22 − φ 12 φ 21 ) 0 0 φ 21 φ 22 et c 11 > c 12 and c 22 > c 21 , φ 11 φ 22 − φ 12 φ 21 Unknown sign: If negative, steady state will be unstable.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend