chapter 6 surface integrals
play

Chapter 6: Surface Integrals Roberto S. Costas-Santos May 2013 - PowerPoint PPT Presentation

Parameterized Surfaces Chapter 6: Surface Integrals Roberto S. Costas-Santos May 2013 http://rscosan.com/docencia.html Chapter 6: Surface Integrals Parameterized Surfaces Outline Parameterized Surfaces 1 The Basics The tangent and normal


  1. Parameterized Surfaces Chapter 6: Surface Integrals Roberto S. Costas-Santos May 2013 http://rscosan.com/docencia.html Chapter 6: Surface Integrals

  2. Parameterized Surfaces Outline Parameterized Surfaces 1 The Basics The tangent and normal vectors of a surface Area of a parameterised surface Surface integral. Interpretation Surface integral of vectorial field http://rscosan.com/docencia.html Chapter 6: Surface Integrals

  3. The Basics The tangent and normal vectors of a surface Parameterized Surfaces Area of a parameterised surface Surface integral. Interpretation Surface integral of vectorial field The Basics A surface is an application c : I ⊆ R 2 → R n . S ( u , v ) = ( x 1 ( u , v ) , x 2 ( u , v ) , . . . , x n ( u , v )) u , v are the independent variables, and x i are the components of the surface. If we have z = f ( x , y ) , with f ( x , y ) good enough on an open set Ω ⊆ R 2 , then we can parameterize the defined surface by writing S ( x , y ) : ( x , y , f ( x , y )) , ( x , y ) ∈ Ω . http://rscosan.com/docencia.html Chapter 6: Surface Integrals

  4. The Basics The tangent and normal vectors of a surface Parameterized Surfaces Area of a parameterised surface Surface integral. Interpretation Surface integral of vectorial field The Basics A surface is an application c : I ⊆ R 2 → R n . S ( u , v ) = ( x 1 ( u , v ) , x 2 ( u , v ) , . . . , x n ( u , v )) u , v are the independent variables, and x i are the components of the surface. If we have z = f ( x , y ) , with f ( x , y ) good enough on an open set Ω ⊆ R 2 , then we can parameterize the defined surface by writing S ( x , y ) : ( x , y , f ( x , y )) , ( x , y ) ∈ Ω . http://rscosan.com/docencia.html Chapter 6: Surface Integrals

  5. The Basics The tangent and normal vectors of a surface Parameterized Surfaces Area of a parameterised surface Surface integral. Interpretation Surface integral of vectorial field The Basics A surface is an application c : I ⊆ R 2 → R n . S ( u , v ) = ( x 1 ( u , v ) , x 2 ( u , v ) , . . . , x n ( u , v )) u , v are the independent variables, and x i are the components of the surface. If we have z = f ( x , y ) , with f ( x , y ) good enough on an open set Ω ⊆ R 2 , then we can parameterize the defined surface by writing S ( x , y ) : ( x , y , f ( x , y )) , ( x , y ) ∈ Ω . http://rscosan.com/docencia.html Chapter 6: Surface Integrals

  6. The Basics The tangent and normal vectors of a surface Parameterized Surfaces Area of a parameterised surface Surface integral. Interpretation Surface integral of vectorial field The Basics A surface is an application c : I ⊆ R 2 → R n . S ( u , v ) = ( x 1 ( u , v ) , x 2 ( u , v ) , . . . , x n ( u , v )) u , v are the independent variables, and x i are the components of the surface. If we have z = f ( x , y ) , with f ( x , y ) good enough on an open set Ω ⊆ R 2 , then we can parameterize the defined surface by writing S ( x , y ) : ( x , y , f ( x , y )) , ( x , y ) ∈ Ω . http://rscosan.com/docencia.html Chapter 6: Surface Integrals

  7. The Basics The tangent and normal vectors of a surface Parameterized Surfaces Area of a parameterised surface Surface integral. Interpretation Surface integral of vectorial field The tangent and normal vectors of a surface Given a parameterized surface S ( u , v ) = ( x ( u , v ) , y ( u , v ) , z ( u , v )) , ( u , v ) ∈ Ω , we define the vectors � ∂ x ∂ u , ∂ y ∂ u , ∂ z = ∂ x ∂ u i + ∂ y ∂ u j + ∂ z � � S u ( u , v ) = ∂ u k , ∂ u and � ∂ x ∂ v , ∂ y ∂ v , ∂ z � = ∂ x ∂ v i + ∂ y ∂ v j + ∂ z � S v ( u , v ) = ∂ v k . ∂ v http://rscosan.com/docencia.html Chapter 6: Surface Integrals

  8. The Basics The tangent and normal vectors of a surface Parameterized Surfaces Area of a parameterised surface Surface integral. Interpretation Surface integral of vectorial field Normal and tangent vectors Given a particular value of u and v , we have a particular point, namely P , on S . In fact Both vectors, � S u and � S v , are in the tangent plane of the surface at the point P . And a normal vector of the surface at the point is the vectorial product � S u and � S v , i.e. � � i j k � � � � N ( u , v ) = ( � � S u × � � S v )( u , v ) = S u ( u , v ) . � � � � � � S v ( u , v ) � � � If at any point we can choose � N so that it changes continuously on S , then we say that S is oriented. Orientation: if the normal vector at any point is outward then the surface is positive oriented. No every surface is oriented: a classical example is the M¨ oebius strip. http://goo.gl/TrQh3 http://rscosan.com/docencia.html Chapter 6: Surface Integrals

  9. The Basics The tangent and normal vectors of a surface Parameterized Surfaces Area of a parameterised surface Surface integral. Interpretation Surface integral of vectorial field Area of a parameterised surface Let S ( u , v ) = ( x ( u , v ) , y ( u , v ) , z ( u , v )) a parameterised surface in R 3 , with ( u , v ) ∈ Ω ⊆ R 2 . The area of such surface is defined by �� � � A ( S ) = N ( u , v ) � dudv . Ω If the parameterised surface is of the form: S ( x , y ) = ( x , y , f ( x , y )) , with ( x , y ) ∈ D ⊆ R 2 , then S u ( x , y ) = ( 1 , 0 , f x ) , S y ( x , y ) = ( 1 , 0 , f y ) , so �� � A ( S ) = 1 + f 2 x + f 2 y dxdy . D Here f x and f y are the respective partials derivatives with respect to x and y . http://rscosan.com/docencia.html Chapter 6: Surface Integrals

  10. The Basics The tangent and normal vectors of a surface Parameterized Surfaces Area of a parameterised surface Surface integral. Interpretation Surface integral of vectorial field Surface integral As before to compute the surface integral of a function over it we integrate 1 over it. Now we will see how to integrate a scalar function over a surface. Let S be a parameterised surface given by S ( u , v ) with ( u , v ) ∈ ω . Given a continuous scalar function g ( x , y , z ) from R 3 to R , we define the integral of the function g over S as �� �� g ( S ( u , v )) � � g dS = N ( u , v ) � dudv . S Ω If S is the graph of the function z = f ( x , y ) , with ( x , y ) ∈ D , and we want to integrate over S the function g ( x , y , z ) , then we need to compute �� �� � g dS = g ( S ( x , y , f ( x , y ))) 1 + f 2 x + f 2 y dxdy . S D http://rscosan.com/docencia.html Chapter 6: Surface Integrals

  11. The Basics The tangent and normal vectors of a surface Parameterized Surfaces Area of a parameterised surface Surface integral. Interpretation Surface integral of vectorial field Surface integral. Interpretation Interpretation: let us imagine surface S as a very thin lamina of some material and the function g ( x , y , z ) as the mass (charge, or other) superficial density of such lamina. �� Then S g dS give us the total mass (charge, ...) of such lamina S with superficial density g . Other possible applications are: To compute the mean of some physical magnitud of a surface, To compute the mass center, the inertia momentum of a surface, etc, with variable density. http://rscosan.com/docencia.html Chapter 6: Surface Integrals

  12. The Basics The tangent and normal vectors of a surface Parameterized Surfaces Area of a parameterised surface Surface integral. Interpretation Surface integral of vectorial field Surface integral of vectorial field Let � F ( x , y , z ) = ( F 1 ( x , y , z ) , F 2 ( x , y , z ) , F 3 ( x , y , z )) a vectorial field defined on S . The integral of � F on S , or flow of � F through the surface S given S ( u , v ) is: �� �� � F � d � F ( S ( u , v )) � � � S = N ( u , v ) dudv . S ٠Remark: We need to be aware about the sign of such integrals since the sign of such value depends on the orientation of the normal through the surface. http://rscosan.com/docencia.html Chapter 6: Surface Integrals

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend