calculus 3
play

Calculus 3 Chapter 15. Multiple Integrals 15.2. Double Integrals - PowerPoint PPT Presentation

Calculus 3 Chapter 15. Multiple Integrals 15.2. Double Integrals over General RegionsExamples and Proofs of Theorems December 13, 2019 () Calculus 3 December 13, 2019 1 / 11 Table of contents Exercise 15.2.20 1 Exercise 15.2.40 2


  1. Calculus 3 Chapter 15. Multiple Integrals 15.2. Double Integrals over General Regions—Examples and Proofs of Theorems December 13, 2019 () Calculus 3 December 13, 2019 1 / 11

  2. Table of contents Exercise 15.2.20 1 Exercise 15.2.40 2 Exercise 15.2.50 3 Exercise 15.2.58 4 Exercise 15.2.76 5 () Calculus 3 December 13, 2019 2 / 11

  3. Exercise 15.2.20 Exercise 15.2.20 Exercise 15.2.20. Sketch the region of integration and evaluate the � π � sin x double integral y dy dx . 0 0 Solution. The region is: () Calculus 3 December 13, 2019 3 / 11

  4. Exercise 15.2.20 Exercise 15.2.20 Exercise 15.2.20. Sketch the region of integration and evaluate the � π � sin x double integral y dy dx . 0 0 Solution. The region is: We evaluate the iterated integral as: � π � sin x � π � π y =sin x sin 2 x y 2 � � y dy dx = dx = − 0 dx � 2 2 0 0 0 � 0 y =0 () Calculus 3 December 13, 2019 3 / 11

  5. Exercise 15.2.20 Exercise 15.2.20 Exercise 15.2.20. Sketch the region of integration and evaluate the � π � sin x double integral y dy dx . 0 0 Solution. The region is: We evaluate the iterated integral as: � π � sin x � π � π y =sin x sin 2 x y 2 � � y dy dx = dx = − 0 dx � 2 2 0 0 0 � 0 y =0 () Calculus 3 December 13, 2019 3 / 11

  6. Exercise 15.2.20 Exercise 15.2.20 (continued) Exercise 15.2.20. Sketch the region of integration and evaluate the � π � sin x double integral y dy dx . 0 0 Solution (continued). � π 1 1 − cos 2 x dx since sin 2 x = 1 − cos 2 x = 2 2 2 0 x = π � � π � = x 4 − sin 2 x 4 − sin 2 π − (0) = π � = 4 . � 8 8 � x =0 () Calculus 3 December 13, 2019 4 / 11

  7. Exercise 15.2.40 Exercise 15.2.40 Exercise 15.2.40. Sketch the region of integration and write the equivalent double integral with the order of integration reverse: � 2 � 4 − y 2 y dx dy . 0 0 Solution. We first have x ranging from 0 to 4 − y 2 , and second y ranges from 0 to 2. So the region is: () Calculus 3 December 13, 2019 5 / 11

  8. Exercise 15.2.40 Exercise 15.2.40 Exercise 15.2.40. Sketch the region of integration and write the equivalent double integral with the order of integration reverse: � 2 � 4 − y 2 y dx dy . 0 0 Solution. We first have x ranging from 0 to 4 − y 2 , and second y ranges from 0 to 2. So the region is: Now we can interpret that first y ranges from 0 to the curve x = 4 − y 2 (or y = √ 4 − x , since y ≥ 0 on the region) and second x ranges from 0 to 4. So the integral becomes � 4 � √ 4 − x y dy dx . 0 0 () Calculus 3 December 13, 2019 5 / 11

  9. Exercise 15.2.40 Exercise 15.2.40 Exercise 15.2.40. Sketch the region of integration and write the equivalent double integral with the order of integration reverse: � 2 � 4 − y 2 y dx dy . 0 0 Solution. We first have x ranging from 0 to 4 − y 2 , and second y ranges from 0 to 2. So the region is: Now we can interpret that first y ranges from 0 to the curve x = 4 − y 2 (or y = √ 4 − x , since y ≥ 0 on the region) and second x ranges from 0 to 4. So the integral becomes � 4 � √ 4 − x y dy dx . 0 0 () Calculus 3 December 13, 2019 5 / 11

  10. Exercise 15.2.50 Exercise 15.2.50 Exercise 15.2.50. Sketch the region of integration, reverse the order of integration, and evaluate the integral: � 2 � 4 − x 2 xe 2 y 4 − y dy dx . 0 0 Solution. We first have y ranging from 0 to 4 − x 2 , and second x ranges from 0 to 2. So the region is: () Calculus 3 December 13, 2019 6 / 11

  11. Exercise 15.2.50 Exercise 15.2.50 Exercise 15.2.50. Sketch the region of integration, reverse the order of integration, and evaluate the integral: � 2 � 4 − x 2 xe 2 y 4 − y dy dx . 0 0 Solution. We first have y ranging from 0 to 4 − x 2 , and second x ranges from 0 to 2. So the region is: Now we can interpret that first x ranges from 0 to the curve y = 4 − x 2 (or x = √ 4 − y , since x ≥ 0 on the region) and second y ranges from 0 to 4. So the integral becomes � 4 � √ 4 − y xe 2 y 4 − y dx dy . 0 0 () Calculus 3 December 13, 2019 6 / 11

  12. Exercise 15.2.50 Exercise 15.2.50 Exercise 15.2.50. Sketch the region of integration, reverse the order of integration, and evaluate the integral: � 2 � 4 − x 2 xe 2 y 4 − y dy dx . 0 0 Solution. We first have y ranging from 0 to 4 − x 2 , and second x ranges from 0 to 2. So the region is: Now we can interpret that first x ranges from 0 to the curve y = 4 − x 2 (or x = √ 4 − y , since x ≥ 0 on the region) and second y ranges from 0 to 4. So the integral becomes � 4 � √ 4 − y xe 2 y 4 − y dx dy . 0 0 () Calculus 3 December 13, 2019 6 / 11

  13. Exercise 15.2.50 Exercise 15.2.50 (continued) Exercise 15.2.50. Sketch the region of integration, reverse the order of integration, and evaluate the integral: � 2 � 4 − x 2 xe 2 y 4 − y dy dx . 0 0 Solution (continued). We now evaluate the new iterated integral: x = √ 4 − y � √ 4 − y � 4 � 4 xe 2 y x 2 e 2 y � � 4 − y dx dy = dy � 2(4 − y ) 0 0 0 � x =0 ( √ 4 − y ) 2 e 2 y � 4 � 4 � 4 (4 − y ) e 2 y e 2 y = − 0 dy = 2(4 − y ) dy = 2 dy 2(4 − y ) 0 0 0 y =4 = e 8 − 1 = e 2 y = e 2(4) − e 2(0) � � . � 4 4 4 4 � y =0 () Calculus 3 December 13, 2019 7 / 11

  14. Exercise 15.2.58 Exercise 15.2.58 Exercise 15.2.58. Find the volume of the solid that is bounded above the cylinder z = x 2 and below by the region enclosed by the parabola y = 2 − x 2 and the line y = x in the xy -plane. Solution. The region R is: () Calculus 3 December 13, 2019 8 / 11

  15. Exercise 15.2.58 Exercise 15.2.58 Exercise 15.2.58. Find the volume of the solid that is bounded above the cylinder z = x 2 and below by the region enclosed by the parabola y = 2 − x 2 and the line y = x in the xy -plane. Solution. The region R is: First y ranges from x to 2 − x 2 , and second x ranges from − 2 to 1. Since z = f ( x , y ) = x 2 is nonnegative over R then the desired volume is � √ � 1 2 − x 2 x 2 dy dx . V = − 2 x () Calculus 3 December 13, 2019 8 / 11

  16. Exercise 15.2.58 Exercise 15.2.58 Exercise 15.2.58. Find the volume of the solid that is bounded above the cylinder z = x 2 and below by the region enclosed by the parabola y = 2 − x 2 and the line y = x in the xy -plane. Solution. The region R is: First y ranges from x to 2 − x 2 , and second x ranges from − 2 to 1. Since z = f ( x , y ) = x 2 is nonnegative over R then the desired volume is � √ � 1 2 − x 2 x 2 dy dx . V = − 2 x () Calculus 3 December 13, 2019 8 / 11

  17. Exercise 15.2.58 Exercise 15.2.58 (continued) Solution (continued). So the volume is � √ � 1 � 1 2 − x 2 � y =2 − x 2 x 2 dy dx = x 2 y � V = dx y = x − 2 − 2 x � 1 � 1 x =1 2 x 2 − x 4 − x 3 dx = 2 x 3 − x 5 5 − x 4 � x 2 (2 − x 2 ) − x 2 ( x ) dx = � = � 3 4 � − 2 − 2 x = − 2 � 2(1) 3 − (1) 5 − (1) 4 � 2( − 2) 3 − ( − 2) 5 − ( − 2) 4 � � = − 3 5 4 3 5 4 = 2 3 − 1 5 − 1 4 + 16 3 − 32 5 +4 = 40 60 − 12 60 − 15 60 + 320 60 − 384 60 + 240 60 = 189 60 = 63 20 . () Calculus 3 December 13, 2019 9 / 11

  18. Exercise 15.2.76 Exercise 15.2.76 Exercise 15.2.76. (Unbounded Region) Integrate 1 f ( x , y ) = ( x 2 − x )( y − 1) 2 / 3 over the infinite rectangle 2 ≤ x < ∞ , 0 ≤ y ≤ 2. � 2 � ∞ 1 Solution. We want to find ( x 2 − x )( y − 1) 2 / 3 dy dx . This is an 2 0 improper integral and so we write it as a limit: � 2 � 2 � b � ∞ 1 1 ( x 2 − x )( y − 1) 2 / 3 dy dx = lim ( x 2 − x )( y − 1) 2 / 3 dy dx b →∞ 2 0 2 0 y =2 � b � ( y − 1) 1 / 3 1 � = lim dx � x 2 − x 1 / 3 � b →∞ 2 � y =0 � b 1 1 x 2 − x 3((2) − 1) 1 / 3 − = lim x 2 − x 3((0) − 1)1 / 3 dx b →∞ 2 () Calculus 3 December 13, 2019 10 / 11

  19. Exercise 15.2.76 Exercise 15.2.76 Exercise 15.2.76. (Unbounded Region) Integrate 1 f ( x , y ) = ( x 2 − x )( y − 1) 2 / 3 over the infinite rectangle 2 ≤ x < ∞ , 0 ≤ y ≤ 2. � 2 � ∞ 1 Solution. We want to find ( x 2 − x )( y − 1) 2 / 3 dy dx . This is an 2 0 improper integral and so we write it as a limit: � 2 � 2 � b � ∞ 1 1 ( x 2 − x )( y − 1) 2 / 3 dy dx = lim ( x 2 − x )( y − 1) 2 / 3 dy dx b →∞ 2 0 2 0 y =2 � b � ( y − 1) 1 / 3 1 � = lim dx � x 2 − x 1 / 3 � b →∞ 2 � y =0 � b 1 1 x 2 − x 3((2) − 1) 1 / 3 − = lim x 2 − x 3((0) − 1)1 / 3 dx b →∞ 2 () Calculus 3 December 13, 2019 10 / 11

  20. Exercise 15.2.76 Exercise 15.2.76 (continued) Exercise 15.2.76. (Unbounded Region) Integrate 1 f ( x , y ) = ( x 2 − x )( y − 1) 2 / 3 over the infinite rectangle 2 ≤ x < ∞ , 0 ≤ y ≤ 2. Solution (continued). � b � b 6 x − 1 − 1 1 = lim x 2 − x dx = 6 lim x dx by partial fractions b →∞ b →∞ 2 2 x = b � x − 1 �� b →∞ (ln( x − 1) − ln x ) | x = b � = 6 lim x =2 = 6 lim b →∞ ln � x � x =2 � b − 1 � � (2) − 1 � = 6 lim b →∞ ln − 6 ln = − 6 ln(1 / 2) = 6 ln 2 . 2 b () Calculus 3 December 13, 2019 11 / 11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend