challenges strategies for the spice model extraction
play

Challenges & Strategies for the SPICE Model Extraction & - PowerPoint PPT Presentation

Challenges & Strategies for the SPICE Model Extraction & Simulation of the PD-SOI Technology Jung- Suk Goo Compact Modeling & Characterization Group Microprocessor Solutions Sector, Sunnyvale, CA Advanc e d Mic r o De vic e s


  1. Challenges & Strategies for the SPICE Model Extraction & Simulation of the PD-SOI Technology Jung- Suk Goo Compact Modeling & Characterization Group Microprocessor Solutions Sector, Sunnyvale, CA Advanc e d Mic r o De vic e s

  2. Outline ! Bulk CMOS vs. PD-SOI CMOS Self-heating ! Floating-Body Modeling: History-Effect ! ! Definition ! Underlying Physics ! Key Components & Their Impacts ! Parameter Extraction Flow ! Challenges in Measurement & Extraction Tied-Body Modeling ! ! History–Effect in Tied-Body CMOS ! Parasitic Gate Capacitance ! Distributed Body Resistance Conclusion ! 2 20/ 09/ 05 MOS-AK 2005

  3. Outline ! Bulk CMOS vs. PD-SOI CMOS Self-heating ! Floating-Body Modeling: History-Effect ! ! Definition ! Underlying Physics ! Key Components & Their Impacts ! Parameter Extraction Flow ! Challenges in Measurement & Extraction Tied-Body Modeling ! ! History–Effect in Tied-Body CMOS ! Parasitic Gate Capacitance ! Distributed Body Resistance Conclusion ! 3 20/ 09/ 05 MOS-AK 2005

  4. Bulk CMOS vs. PD-SOI CMOS Bulk CMOS PD- SOI CMOS Identical body potential Independent body potential The chief difference of the PD-SOI is that the body of each SOI transistor is an ! independent 4 th terminal for the device ! When absolutely needed, the body can be fixed to a chosen potential with a body tie: Transistor Transistor with body with body Floating Floating tie tie Body Body Transistor Transistor ! However, in 99.9% of the chip, transistors will be operating as floating body devices 4 20/ 09/ 05 MOS-AK 2005

  5. Self-Heating 1.5E-3 1.5E-3 1.5E-3 without self-heating without self-heating without self-heating with self-heating with self-heating with self-heating Drain Current (A/um) Drain Current (A/um) Drain Current (A/um) 1.2E-3 1.2E-3 1.2E-3 Vgs=2.0 V Vgs=2.0 V Vgs=2.0 V 9E-4 9E-4 9E-4 Vgs=1.5 V Vgs=1.5 V Vgs=1.5 V 6E-4 6E-4 6E-4 Vgs=1.0 V Vgs=1.0 V Vgs=1.0 V 3E-4 3E-4 3E-4 Vgs=0.5 V Vgs=0.5 V Vgs=0.5 V 0 0 0 0 0 0 0.4 0.4 0.4 0.8 0.8 0.8 1.2 1.2 1.2 1.6 1.6 1.6 2 2 2 Drain Voltage(V) Drain Voltage(V) Drain Voltage(V) Thermal conductivity ! ! K si = 60 - 148W/mK Cth Rth Po we r K ox = 0.2 - 1.2W/mK ! Relatively poor modeling ! ! Occasional convergence issue 5 20/ 09/ 05 MOS-AK 2005

  6. Outline ! Bulk CMOS vs. PD-SOI CMOS Self-heating ! Floating-Body Modeling: History-Effect ! ! Definition ! Underlying Physics ! Key Components & Their Impacts ! Parameter Extraction Flow ! Challenges in Measurement & Extraction Tied-Body Modeling ! ! History–Effect in Tied-Body CMOS ! Parasitic Gate Capacitance ! Distributed Body Resistance Conclusion ! 6 20/ 09/ 05 MOS-AK 2005

  7. CMOS Inverter Operation 7 20/ 09/ 05 MOS-AK 2005

  8. Definition of History-Effect τ 2nd History-effect H = ( τ 1st – τ 2nd ) / τ 2nd τ 1st ! 1st switch: input transition after being held constant for a long time. ! 2nd switch: input transition short time after the 1st switch. 8 20/ 09/ 05 MOS-AK 2005

  9. Typical History-Effect E volution of Switc hing De lay Input Cloc k Shape 15 1 st SW 14 Delay/Stage [ps] 13 12 2 nd SW Dynamic t r =t f =0.8ns Ste ady 11 t per =40ns (50% duty) State step=100ps 10 -10 -9 -8 -7 -6 -5 -4 10 10 10 10 10 10 10 Time [s] ! Delay is subject to switching history of the logic gate. 9 20/ 09/ 05 MOS-AK 2005

  10. What Causes History-Effect? ! Body Potential is a function of: ! Capacitive coupling to ! Source ! Drain Source Drain ! Gate ! Substrate (small) ! Diode Leakages to Buried Oxide ! Source ! Drain ! Gate Leakage Substrate ! Impact Ionization Also subject to the previous ! switching history 10 20/ 09/ 05 MOS-AK 2005

  11. Combined Capacitive/Resistive Network C1 R1 C-Divider Vo ltag e C2 R2 RC Decay R-Divider T ime 11 20/ 09/ 05 MOS-AK 2005

  12. Time for Actual Contribution to Speed Initial DC Capacitive Conditions Coupling 1 st SW : Initial DC ! 2 nd SW : Initial DC + Capacitive Coupling ! 12 20/ 09/ 05 MOS-AK 2005

  13. Capacitive Coupling Gate Drain Gate Drain Coupling Coupling Coupling Coupling ! Capacitive coupling is stronger to drain than to gate. 13 20/ 09/ 05 MOS-AK 2005

  14. Key Components (Initial DC Condition) 2 nd SW 2 nd SW st SW st SW 1 1 I gb,acc I gb,acc I dio,rev I dio,rev I dio,for I dio,for I gb,inv I gb,inv I dio,for I dio,for 1 st SW Initial ! KCL balance between forward and reverse I diode ! ! Accumulation I gb is much smaller than forward I diode 2 nd SW Initial ! ! KCL balance between forward I diode *2 and inversion I gb 14 20/ 09/ 05 MOS-AK 2005

  15. Key Components (AC Coupling) V DD V DD C j,rev C j,rev C ∆ = j , rev V V + + + + bs DD C C C gb , acc j , for j , rev C j,for C j,for C gb,acc C gb,acc ∆ V b ∆ V b - - ! Basically a voltage-divider that consists of: ! gate-body capacitance and junction capacitance ! Drain AC coupling is more significant than gate AC coupling 15 20/ 09/ 05 MOS-AK 2005

  16. Key Components (Body-Effect) V t vs. V body Diode current V t & Gate current V body speed Gate capacitance Junction capacitance ! Body potential is established mostly by diode and gate characteristics (DC & AC). This body potential is translated into the actual switching ! performance by the body-effect (the main transfer function). 16 20/ 09/ 05 MOS-AK 2005

  17. Impact of Gate Capacitance & Current Inve r sion I gb Impac t Inve r sion C gb Impac t 30 30 25 25 20 20 nd [%] nd [%] 15 15 10 10 nd )/2 nd )/2 5 5 st -2 st -2 Increasing Increasing 0 0 (1 (1 inversion I gb accumulation C gb -5 -5 2 nd V b ↑ 2 nd V b ↓ -10 -10 0.8 1.0 1.2 1.4 1.6 0.8 1.0 1.2 1.4 1.6 V DD [V] V DD [V] ! Cgb is critical for V DD dependence slope ! Igb is a major factor in 130nm technology and below C ∆ = db V V + + b , 2 nd DD C C C gb sb db 17 20/ 09/ 05 MOS-AK 2005

  18. Impact of Diode Current F or war d I diode L e ve l Impac t Re ve r se I diode Impac t 30 30 25 25 20 20 nd [%] nd [%] 15 15 10 10 nd )/2 nd )/2 5 5 st -2 st -2 Increasing Increasing 0 0 (1 (1 forward I diode reverse I diode -5 -5 1 st V b ↓↓ 2 nd V b ↓ 1 st V b ↑ -10 -10 0.8 1.0 1.2 1.4 1.6 0.8 1.0 1.2 1.4 1.6 V DD [V] V DD [V] ! The diode current characteristic is the key characteristic dominating the V DD and temperature dependences of the history-effect: ! Proportional to forward Idiode Inversely proportional to reverse Idiode ! 18 20/ 09/ 05 MOS-AK 2005

  19. Outline ! Bulk CMOS vs. PD-SOI CMOS Self-heating ! Floating-Body Modeling: History-Effect ! ! Definition ! Underlying Physics ! Key Components & Their Impacts ! Parameter Extraction Flow ! Challenges in Measurement & Extraction Tied-Body Modeling ! ! History–Effect in Tied-Body CMOS ! Parasitic Gate Capacitance ! Distributed Body Resistance Conclusion ! 19 20/ 09/ 05 MOS-AK 2005

  20. Do History-Effect Modeling First! Intr insic MOSF E T Par asitic Charac te ristic s Charac te ristic s I Dsat , I o ff , V t , … I dio de , I g b , … History E ffe c t ! Intrinsic MOSFET characteristics has only small impact on history effect. 20 20/ 09/ 05 MOS-AK 2005

  21. PD-SOI Parameter Extraction Procedure ffe c t & Cg F itting Body- E Tied Ve ry Crude IV F itting Body e nts F itting Body Cur r (I dio de , I g b , e tc ) Che c k History E ffe c t Floating Body Re fine All IV F itting 21 20/ 09/ 05 MOS-AK 2005

  22. Challenges in Measurement & Extraction Ac tive Ga te Po ly P+ I / I Parasitic Opposite Type Gate P+ N+ P+ P w/ halo ST I P- Neck Easily Gets Fully-Depleted 22 20/ 09/ 05 MOS-AK 2005

  23. Parasitic Opposite-Type Gate nMOS pMOS -6 -6 1x10 1x10 Bulk BT/SOI Bulk BT/SOI -7 -7 1x10 1x10 I GG I GG I GB I GB -8 -8 1x10 1x10 Gate Current [A] Gate Current [A] -9 -9 1x10 1x10 -10 -10 1x10 1x10 -11 -11 10 10 -12 -12 10 10 -13 -13 10 10 -14 -14 10 10 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 V G [V] V G [V] ! Big discrepancy in Igb characteristic due to the parasitic Especially in inversion region ! ! Need a bulk wafer 23 20/ 09/ 05 MOS-AK 2005

  24. Fully-Depleted Neck Body- E ffe c t Junc tion Capac itanc e 0.5 1.5 0.4 V DS =0.1V 1.0 C Junction [pF] 0.3 V T [V] 0.2 V DS =1.2V 0.5 0.1 nMOSFET 2/0.0875 µ m 0.0 0.0 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 -1.0 -0.5 0.0 0.5 V bs [V] V bias [V] ! Low-doping neck can cause artifacts in measured data 24 20/ 09/ 05 MOS-AK 2005

  25. Back-Bias Range of Interest T ie d Body F loating & Bulk Body 0.5 Re ve r se 0.4 V DS =0.1V 0.3 V T [V] 0.2 V DS =1.2V F or war d 0.1 nMOSFET 2/0.0875 µ m 0.0 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 V bs [V] ! Sometimes the body effect is not able to fit for the entire range. ! Then some range should be compromised. ! Separating TB and FB models maybe more desirable. 25 20/ 09/ 05 MOS-AK 2005

  26. Outline ! Bulk CMOS vs. PD-SOI CMOS Self-heating ! Floating-Body Modeling: History-Effect ! ! Definition ! Underlying Physics ! Key Components & Their Impacts ! Parameter Extraction Flow ! Challenges in Measurement & Extraction Tied-Body Modeling ! ! History–Effect in Tied-Body CMOS ! Parasitic Gate Capacitance ! Distributed Body Resistance Conclusion ! 26 20/ 09/ 05 MOS-AK 2005

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend