certification of minimal approximant bases
play

Certification of Minimal Approximant Bases Pascal Giorgi 1 , Vincent - PowerPoint PPT Presentation

Certification of Minimal Approximant Bases Pascal Giorgi 1 , Vincent Neiger 2 1 Universit 2 Universit e de Limoges, France e de Montpellier, France ISSAC2018, New York, USA July 17, 2018 Approximant Bases Let F K [ X ] m n a


  1. Certification of Minimal Approximant Bases Pascal Giorgi 1 , Vincent Neiger 2 1 Universit´ 2 Universit´ e de Limoges, France e de Montpellier, France ISSAC’2018, New York, USA July 17, 2018

  2. Approximant Bases Let F ∈ K [ X ] m × n a matrix of power series truncated at order d = ( d 1 , . . . , d n ) columnwise : ∀ 1 ≤ j ≤ n , deg F ∗ , j < d j approximant of F at order d : p ∈ K [ X ] 1 × m s.t. pF = [0 , . . . , 0] mod X ( d 1 ,..., d n ) the set A d ( F ) of all approximants of F forms a free K [ X ]-module of rank m [Van Barel, Bultheel 1992] . A basis P ∈ K [ X ] m × m of A d ( F ) is called an approximant basis

  3. Minimal Approximant Bases Minimality row-reduced over K [ X ], i.e. minimal row degree among all bases     3 x 3 2 x 2 x + 3 3 x 3 + 4 x 2 2 x 3 + 3 x 2  , rdeg ( P ) = 5 x 2 P = 3    x 3 + 6 x 2 + 4 x 2 x 3 + 8 x 2 + 5 6 x 2 + 3 3

  4. Minimal Approximant Bases Minimality row-reduced over K [ X ], i.e. minimal row degree among all bases     3 x 3 2 x 2 x + 3 3 x 3 + 4 x 2 2 x 3 + 3 x 2  , rdeg ( P ) = 5 x 2 P = 3    x 3 + 6 x 2 + 4 x 2 x 3 + 8 x 2 + 5 6 x 2 + 3 3 ⇒ row-reduction is related to the rdeg -leading matrix of P       3 x 3 2 x 2 1 x + 3 3 x 3 + 4 x 2 2 x 3 + 3 x 2  P = R = 5 x 2  , rdeg ( R ) = 1 3     2 x 2 + 4 x 5 x 2 + 5 x 2 + 3 − 1 1 2

  5. Shifted Minimal Approximant Bases Shifted row degree (or s -row degree) degree measure for weighting the columns with a shift s = ( s 1 , . . . , s m )   X s 1 ...   rdeg s ( P ) = rdeg ( PX s ) = rdeg ( P  )  X s m s -minimal approximant bases bases of A d ( F ) that have minimal s -row degree among all bases ( s -reduced)

  6. Shifted Minimal Approximant Bases Shifted row degree (or s -row degree) degree measure for weighting the columns with a shift s = ( s 1 , . . . , s m )   X s 1 ...   rdeg s ( P ) = rdeg ( PX s ) = rdeg ( P  )  X s m s -minimal approximant bases bases of A d ( F ) that have minimal s -row degree among all bases ( s -reduced) s -Popov approximant bases (uniqueness) rdeg s -leading matrix → unitary lower triangular matrix cdeg -leading matrix → identity

  7. Algorithms for Approximant Bases - polynomial matrix F ∈ K [ X ] m × n > 0 with D = | d | = � - order d = ( d 1 , . . . , d n ) ∈ Z n j d j - shift s ∈ Z m Best known algorithms to date cost in O ˜( m ω D / m ) = O ˜( m ω − 1 D ) minimal bases (unique order, no shift) [G., Jeannerod, Villard ISSAC’03] s -minimal bases (unique order, small shifts) [Zhou, Labahn ISSAC’12] s -Popov bases (all orders/shifts) [Jeannerod et al. ISSAC’16]

  8. Algorithms for Approximant Bases - polynomial matrix F ∈ K [ X ] m × n > 0 with D = | d | = � - order d = ( d 1 , . . . , d n ) ∈ Z n j d j - shift s ∈ Z m Best known algorithms to date cost in O ˜( m ω D / m ) = O ˜( m ω − 1 D ) minimal bases (unique order, no shift) [G., Jeannerod, Villard ISSAC’03] s -minimal bases (unique order, small shifts) [Zhou, Labahn ISSAC’12] s -Popov bases (all orders/shifts) [Jeannerod et al. ISSAC’16] These are deterministic non-optimal algorithms, i.e. Size ( F ) = mD when delegating computation → hope for faster verification

  9. Verifying outsourced computation F , x Verifier Prover y= F (x), proof generating the proof must be negiglible verifying the proof must be easier than computing F (x) → different models : interactive or static

  10. Verifying outsourced computation F , x Verifier Prover y= F (x), proof generating the proof must be negiglible verifying the proof must be easier than computing F (x) → different models : interactive or static Sometimes the proof is unnecessary : → Freivalds’ verification of matrix mul. ( uA ) B = uC

  11. Certifying linear algebra Generic approaches exist Interactive proof for boolean circuits [Goldwasser, Kalai, Rothblum ’08 ; Thaler ’13] matrix mul. reduction → rerun with Freivalds [Kaltofen, Nehrig, Saunders ISSAC’11] prover or verifier time might not be optimal ✗

  12. Certifying linear algebra Generic approaches exist Interactive proof for boolean circuits [Goldwasser, Kalai, Rothblum ’08 ; Thaler ’13] matrix mul. reduction → rerun with Freivalds [Kaltofen, Nehrig, Saunders ISSAC’11] prover or verifier time might not be optimal ✗ Optimal ad’hoc verifications exist [Dumas,Kaltofen ISSAC’14] ✓ prover and verifier time can be “optimal” ✓ independent of the circuit (certifying result rather than execution)

  13. Certifying linear algebra Generic approaches exist Interactive proof for boolean circuits [Goldwasser, Kalai, Rothblum ’08 ; Thaler ’13] matrix mul. reduction → rerun with Freivalds [Kaltofen, Nehrig, Saunders ISSAC’11] prover or verifier time might not be optimal ✗ Optimal ad’hoc verifications exist [Dumas,Kaltofen ISSAC’14] ✓ prover and verifier time can be “optimal” ✓ independent of the circuit (certifying result rather than execution) How to optimally certify/verify approximant bases ?

  14. Main result Given P a s -minimal basis of A d ( F ) with Size ( P ) = O ( mD ) Static proof for s -minimal approximant bases additional effort : O ( m ω − 1 D ) prover Monte Carlo verification : O ( mD + m ω − 1 ( m + n )) verifier D probability of error ≤ # S for S ⊂ K . ⇒ almost optimal certificate ( D ≫ m 2 often the case in practice) ⇒ total prover time remains in O ˜( m ω − 1 D )

  15. Main result Given P a s -minimal basis of A d ( F ) with Size ( P ) = O ( mD ) Size ( P ) = O ( mD ) not in general ⇒ but bases computed by best known algorithms have such property | rdeg ( P ) | ∈ O ( D ) [Van Barel, Bultheel ’92 ; Zhou, Labahn ISSAC’12] | cdeg ( P ) | ≤ D ( s -Popov) [Jeannerod et al. ISSAC’16]

  16. How to certify approximant basis Minimal : P is s -reduced 1 Approximant : PF = 0 mod X ( d 1 ,..., d n ) 2 Basis : rows of P generate A d ( F ) 3

  17. How to certify approximant basis Minimal : P is s -reduced 1 This amounts to check non-singularity of the rdeg s -leading matrix of P ⇒ can be done at a cost O ( m ω )

  18. How to certify approximant basis Approximant : PF = 0 mod X ( d 1 ,..., d n ) 2 not trivial → computing PF mod X ( d 1 ,..., d n ) costs O ˜( m ω − 1 D ).

  19. How to certify approximant basis Approximant : PF = 0 mod X ( d 1 ,..., d n ) 2 not trivial → computing PF mod X ( d 1 ,..., d n ) costs O ˜( m ω − 1 D ). Proposition : Freivalds + [G. ’18] verify PF = G mod X ( d 1 ,..., d n ) at optimal cost O ( mD )

  20. How to certify approximant basis Approximant : PF = 0 mod X ( d 1 ,..., d n ) 2 not trivial → computing PF mod X ( d 1 ,..., d n ) costs O ˜( m ω − 1 D ). Proposition : Freivalds + [G. ’18] verify PF = G mod X ( d 1 ,..., d n ) at optimal cost O ( mD ) check ( uP ) F = uG mod X ( d 1 ,..., d n ) for a random vector u

  21. How to certify approximant basis Approximant : PF = 0 mod X ( d 1 ,..., d n ) 2 not trivial → computing PF mod X ( d 1 ,..., d n ) costs O ˜( m ω − 1 D ). Proposition : Freivalds + [G. ’18] verify PF = G mod X ( d 1 ,..., d n ) at optimal cost O ( mD ) check ( uP ) F = uG mod X ( d 1 ,..., d n ) for a random vector u check for a random α ∈ S ⊂ K , δ = max ( d 1 , . . . , d n ) that   uP 0     F 0 uG 0 ... F 1 uG 1   uP 1 � 1 α . . . α δ − 1 �   � 1 α . . . α δ − 1 �     .  = .     . . .  ... ...  .  .  .    . F δ − 1 uG δ − 1 uP δ − 1 . . . uP 1 uP 0

  22. How to certify approximant basis Approximant : PF = 0 mod X ( d 1 ,..., d n ) 2 not trivial → computing PF mod X ( d 1 ,..., d n ) costs O ˜( m ω − 1 D ). Proposition : Freivalds + [G. ’18] verify PF = G mod X ( d 1 ,..., d n ) at optimal cost O ( mD ) check ( uP ) F = uG mod X ( d 1 ,..., d n ) for a random vector u check for a random α ∈ S ⊂ K , δ = max ( d 1 , . . . , d n ) that   uP 0   F 0 ... F 1   uP 1 � 1 α . . . α δ − 1 �     .  = uG ( α )   . .  ... ...  .  .   . F δ − 1 uP δ − 1 . . . uP 1 uP 0

  23. How to certify approximant basis Approximant : PF = 0 mod X ( d 1 ,..., d n ) 2 not trivial → computing PF mod X ( d 1 ,..., d n ) costs O ˜( m ω − 1 D ). Proposition : Freivalds + [G. ’18] verify PF = G mod X ( d 1 ,..., d n ) at optimal cost O ( mD ) check ( uP ) F = uG mod X ( d 1 ,..., d n ) for a random vector u check for a random α ∈ S ⊂ K , δ = max ( d 1 , . . . , d n ) that   F 0 F 1   � � uP ( α ) . . . α δ − j u ( P rem X j )( α ) . . . α δ − 1 uP 0  = uG ( α ) .   .  . F δ − 1 Horner’s intermediate values for α δ − 1 rev ( uP ) on X = α − 1

  24. How to certify approximant basis Basis : rows of P generate A d ( F ) 3

  25. How to certify approximant basis Basis : rows of P generate A d ( F ) 3 Proposed lemma rows of P generate A d ( F ) if and only if PF = 0 mod X d det ( P ) = X δ for 0 < δ ≤ D [Beckermann, Labahn ’97] � � ∈ K m × ( m + n ) has full rank, where the matrix P (0) C C = PFX − d mod X (our certificate)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend