physical zero knowledge proofs for akari takuzu kakuro
play

Physical Zero-Knowledge Proofs for Akari, Takuzu, Kakuro and KenKen - PowerPoint PPT Presentation

Physical Zero-Knowledge Proofs for Akari, Takuzu, Kakuro and KenKen X. Bultel 1 J. Dreier 2 J-G. Dumas 3 P. Lafourcade 1 1 LIMOS, University Clermont Auvergne, France 2 Universit e de Lorraine, LORIA, Nancy, France 3 LJK, Universit e Grenoble


  1. Physical Zero-Knowledge Proofs for Akari, Takuzu, Kakuro and KenKen X. Bultel 1 J. Dreier 2 J-G. Dumas 3 P. Lafourcade 1 1 LIMOS, University Clermont Auvergne, France 2 Universit´ e de Lorraine, LORIA, Nancy, France 3 LJK, Universit´ e Grenoble Alpes, Grenoble, France FUN’16, 9th June 2016, Sardinia X.Bultel et al. ZKP for Akari et al. FUN’16 1 / 29

  2. Zero-Knowledge proof of knowledge Prover knows Verifier knows a solution s of P the problem P bla bla... I do not know s . − − − − − − − − − − − − − − − − − − → bla bla? ← − − − − − − − − − − − − − − − − − − bla bla! − − − − − − − − − − − − − − − − − − → accept or reject s as a solution of P X.Bultel et al. ZKP for Akari et al. FUN’16 2 / 29

  3. Completeness Prover knows Verifier knows a solution s of P the problem P bla bla... I do not know s . − − − − − − − − − − − − − − − − − − → bla bla? ← − − − − − − − − − − − − − − − − − − bla bla! − − − − − − − − − − − − − − − − − − → Hum, ok... I’m convinced! s is a solution of P X.Bultel et al. ZKP for Akari et al. FUN’16 3 / 29

  4. Soundness Prover does not know Verifier knows a solution s of P the problem P bla bla... I do not know s . − − − − − − − − − − − − − − − − − − → bla bla? ← − − − − − − − − − − − − − − − − − − bla bla! − − − − − − − − − − − − − − − − − − → Hum, ... I detect a problem! s is not a solution X.Bultel et al. ZKP for Akari et al. FUN’16 4 / 29

  5. Zero-Knowledge Prover knows Verifier knows a solution s of P the problem P bla bla... I do not know s . − − − − − − − − − − − − − − − − − − → bla bla? ← − − − − − − − − − − − − − − − − − − bla bla! − − − − − − − − − − − − − − − − − − → I do not learn anything about s X.Bultel et al. ZKP for Akari et al. FUN’16 5 / 29

  6. Origins of ZKP Introduced by S. Goldwasser, S. Micali, and C. Rackoff in 1985. O. Goldreich, S. Micali, and A. Wigderson 1991: Polynomial ZKP for every problem in NP under the existence of one-way functions. X.Bultel et al. ZKP for Akari et al. FUN’16 6 / 29

  7. Related Works R. Gradwohl, M. Naor, B. Pinkas, and G. N. Rothblum (FUN’07) Physical (using cards) ZKP for Sudoku. Prover Verifier bla bla bla... I do not know s . − − − − − − − − − − − − − − − − − − → bla bla bla? ← − − − − − − − − − − − − − − − − − − bla bla bla! − − − − − − − − − − − − − − − − − − → accept or reject I detect a problem... X.Bultel et al. ZKP for Akari et al. FUN’16 7 / 29

  8. Contributions Physical Zero-Knowledge Proofs for 4 NP-complete games: � � � � � 4 Akari 1 0 0 1 0 0 Takuzu 0 1 1 0 4 3 3 4 Kakuro + 6 − 1 ∗ 18 KenKen X.Bultel et al. ZKP for Akari et al. FUN’16 8 / 29

  9. Zero-Knowledge Proofs and Logical Games 1 Zero-Knowledge proofs Related Works Akari 2 Rules for Akari ZKP Protocol Kakuro 3 Rules for Kakuro ZKP Protocol Extension to KenKen Conclusion 4 X.Bultel et al. ZKP for Akari et al. FUN’16 9 / 29

  10. Akari GOAL : Place lights on the white cells on the grid such that 3 constraints are respected � � � � � 4 1 0 0 X.Bultel et al. ZKP for Akari et al. FUN’16 10 / 29

  11. Akari A light � illuminates the whole row and column up to a black cell. � � 4 1 0 0 � � � � � X.Bultel et al. ZKP for Akari et al. FUN’16 11 / 29

  12. Contraints (1/3) Two lights cannot illuminate each other � � � 4 � � 1 � 0 0 � � � 4 � 1 � � 0 0 � X.Bultel et al. ZKP for Akari et al. FUN’16 12 / 29

  13. Contraints (2/3) All cells are illuminated ! � � � 4 � 1 � � 0 0 � 4 � � � 1 � 0 0 � X.Bultel et al. ZKP for Akari et al. FUN’16 13 / 29

  14. Contraints (3/3) Numbers in black cells = adjacent lights � � 4 � � 1 0 0 � � 4 � � 1 � � 0 0 � X.Bultel et al. ZKP for Akari et al. FUN’16 14 / 29

  15. Prover Commitment � � 4 � 4 � 1 � 1 0 0 0 0 � Prover commitment: use the empty grid, empty cards and � cards. X.Bultel et al. ZKP for Akari et al. FUN’16 15 / 29

  16. Prover Commitment ✂ ✂ ✂ ✂ ✂ � ✂ ✂ ✂ � 4 � 4 ✂ ✂ ✂ ✂ � 1 � 1 ✂ ✂ ✂ 0 0 0 0 ✂ ✂ ✂ ✂ ✂ � Prover commitment: use the empty grid, empty cards and � cards. put a packet of identical cards on each white cell according to the solution. X.Bultel et al. ZKP for Akari et al. FUN’16 15 / 29

  17. Verification (1/3) ✂ ✂ ✂ ✂ ✂ � ✂ ✂ ✂ 4 4 � � ✂ ✂ ✂ ✂ 1 1 � � ✂ ✂ ✂ 0 0 0 0 ✂ ✂ ✂ ✂ ✂ � Numbers in black cells = adjacent lights X.Bultel et al. ZKP for Akari et al. FUN’16 16 / 29

  18. Verification (1/3) ✂ ✂ ✂ ✂ ✂ � ✂ ✂ ✂ 4 4 � � ✂ ✂ ✂ ✂ 1 1 � � ✂ ✂ ✂ 0 0 0 0 ✂ ✂ ✂ ✂ ✂ � Numbers in black cells = adjacent lights For each black cell with number x : pick one card in all adjacent white cells and shuffle them. X.Bultel et al. ZKP for Akari et al. FUN’16 16 / 29

  19. Verification (1/3) ✂ ✂ ✂ ✂ ✂ � ✂ ✂ ✂ 4 4 � � ✂ ✂ ✂ ✂ 1 1 � � ✂ ✂ ✂ 0 0 0 0 ✂ ✂ ✂ ✂ ✂ � Numbers in black cells = adjacent lights For each black cell with number x : pick one card in all adjacent white cells and shuffle them. V checks that there is exactly x � cards. X.Bultel et al. ZKP for Akari et al. FUN’16 16 / 29

  20. Verification (2/3) ✂ ✂ ✂ ✂ ✂ � ✂ ✂ ✂ 4 4 � � ✂ ✂ ✂ ✂ � 1 � 1 ✂ ✂ ✂ 0 0 0 0 ✂ ✂ ✂ ✂ ✂ � No two lights see each other ⇔ At most one � by row/column. X.Bultel et al. ZKP for Akari et al. FUN’16 17 / 29

  21. Verification (2/3) ✂ ✂ ✂ ✂ ✂ � ✂ ✂ ✂ 4 4 � � ✂ ✂ ✂ ✂ � 1 � 1 ✂ ✂ ✂ 0 0 0 0 ✂ ✂ ✂ ✂ ✂ � No two lights see each other ⇔ At most one � by row/column. For each row/column, take one card per cell and shuffle them. X.Bultel et al. ZKP for Akari et al. FUN’16 17 / 29

  22. Verification (2/3) ✂ ✂ ✂ ✂ ✂ � ✂ ✂ ✂ 4 4 � � ✂ ✂ ✂ ✂ � 1 � 1 ✂ ✂ ✂ 0 0 0 0 ✂ ✂ ✂ ✂ ✂ � No two lights see each other ⇔ At most one � by row/column. For each row/column, take one card per cell and shuffle them. case 1 , empty cards: P adds a � card X.Bultel et al. ZKP for Akari et al. FUN’16 17 / 29

  23. Verification (2/3) ✂ ✂ ✂ ✂ ✂ � ✂ ✂ ✂ 4 4 � � ✂ ✂ ✂ ✂ � 1 � 1 ✂ ✂ ✂ 0 0 0 0 ✂ ✂ ✂ ✂ ✂ � No two lights see each other ⇔ At most one � by row/column. For each row/column, take one card per cell and shuffle them. case 1 , empty cards: P adds a � card → exactly 1 � X.Bultel et al. ZKP for Akari et al. FUN’16 17 / 29

  24. Verification (2/3) ✂ ✂ ✂ ✂ ✂ � ✂ ✂ ✂ 4 4 � � ✂ ✂ ✂ ✂ � 1 � 1 ✂ ✂ ✂ 0 0 0 0 ✂ ✂ ✂ ✂ ✂ � No two lights see each other ⇔ At most one � by row/column. For each row/column, take one card per cell and shuffle them. case 1 , empty cards: P adds a � card → exactly 1 � case 2 , one � : P adds an empty card X.Bultel et al. ZKP for Akari et al. FUN’16 17 / 29

  25. Verification (2/3) ✂ ✂ ✂ ✂ ✂ � ✂ ✂ ✂ 4 4 � � ✂ ✂ ✂ ✂ � 1 � 1 ✂ ✂ ✂ 0 0 0 0 ✂ ✂ ✂ ✂ ✂ � No two lights see each other ⇔ At most one � by row/column. For each row/column, take one card per cell and shuffle them. case 1 , empty cards: P adds a � card → exactly 1 � case 2 , one � : P adds an empty card → exactly 1 � V checks that there is exactly one � card. X.Bultel et al. ZKP for Akari et al. FUN’16 17 / 29

  26. Verification (3/3) ✂ ✂ ✂ ✂ ✂ � ✂ ✂ ✂ 4 4 � � ✂ ✂ ✂ ✂ � 1 � 1 ✂ ✂ ✂ 0 0 0 0 ✂ ✂ ✂ ✂ ✂ � All cells are illuminated ⇔ For each cell, at least one � in its row and column. X.Bultel et al. ZKP for Akari et al. FUN’16 18 / 29

  27. Verification (3/3) ✂ ✂ ✂ ✂ ✂ � ✂ ✂ ✂ 4 4 � � ✂ ✂ ✂ ✂ � 1 � 1 ✂ ✂ ✂ 0 0 0 0 ✂ ✂ ✂ ✂ ✂ � All cells are illuminated ⇔ For each cell, at least one � in its row and column. For each cell, take one card per cell in the same row and column and shuffle them. X.Bultel et al. ZKP for Akari et al. FUN’16 18 / 29

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend