certification of bounds of non linear functions the
play

Certification of Bounds of Non-linear Functions : the Templates - PowerPoint PPT Presentation

Flyspeck-Like Global Optimization Classical Approach: Taylor + SOS Max-Plus Based Templates Certified Global Optimization with Certification of Bounds of Non-linear Functions : the Templates Method Joint Work with B. Werner, S. Gaubert and X.


  1. Flyspeck-Like Global Optimization Classical Approach: Taylor + SOS Max-Plus Based Templates Certified Global Optimization with Certification of Bounds of Non-linear Functions : the Templates Method Joint Work with B. Werner, S. Gaubert and X. Allamigeon Third year PhD Victor MAGRON LIX/CMAP INRIA, ´ Ecole Polytechnique CICM 2013 Monday July 8 th Third year PhD Victor MAGRON Templates SOS

  2. Flyspeck-Like Global Optimization Classical Approach: Taylor + SOS Max-Plus Based Templates Certified Global Optimization with The Kepler Conjecture Kepler Conjecture (1611): π √ The maximal density of sphere packings in 3D-space is 18 It corresponds to the way people would intuitively stack oranges, as a tetrahedron shape The proof of T. Hales (1998) consists of thousands of non-linear inequalities Many recent efforts have been done to give a formal proof of these inequalities: Flyspeck Project Motivation: get positivity certificates and check them with Proof assistants like Coq Third year PhD Victor MAGRON Templates SOS

  3. Flyspeck-Like Global Optimization Classical Approach: Taylor + SOS Max-Plus Based Templates Certified Global Optimization with Contents Flyspeck-Like Global Optimization 1 Classical Approach: Taylor + SOS 2 Max-Plus Based Templates 3 Certified Global Optimization with Coq 4 Third year PhD Victor MAGRON Templates SOS

  4. Flyspeck-Like Global Optimization Classical Approach: Taylor + SOS Max-Plus Based Templates Certified Global Optimization with The Kepler Conjecture Inequalities issued from Flyspeck non-linear part involve: Multivariate Polynomials: 1 x 1 x 4 ( − x 1 + x 2 + x 3 − x 4 + x 5 + x 6 )+ x 2 x 5 ( x 1 − x 2 + x 3 + x 4 − x 5 + x 6 )+ x 3 x 6 ( x 1 + x 2 − x 3 + x 4 + x 5 − x 6 ) − x 2 ( x 3 x 4 + x 1 x 6 ) − x 5 ( x 1 x 3 + x 4 x 6 ) Semi-Algebraic functions algebra A : composition of 2 polynomials with | · | , √ , + , − , × , /, sup , inf , · · · Transcendental functions T : composition of semi-algebraic 3 functions with arctan , exp , sin , + , − , × , · · · Lemma from Flyspeck (inequality ID 6096597438 ) ∀ x ∈ [3 , 64] , 2 π − 2 x arcsin(cos(0 . 797) sin( π/x ))+0 . 0331 x − 2 . 097 ≥ 0 Third year PhD Victor MAGRON Templates SOS

  5. Flyspeck-Like Global Optimization Classical Approach: Taylor + SOS Max-Plus Based Templates Certified Global Optimization with Global Optimization Problems: Examples from the Literature   4 3 � � a ij ( x j − p ij ) 2 H3 : x ∈ [0 , 1] 3 − min c i exp  −  i =1 j =1 sin( x 1 + x 2 ) + ( x 1 − x 2 ) 2 − 0 . 5 x 2 + 2 . 5 x 1 + 1 min MC : x 1 ∈ [ − 3 , 3] x 2 ∈ [ − 1 . 5 , 4] 5 n � � � � SBT : min j cos(( j + 1) x i + j ) x ∈ [ − 10 , 10] n i =1 j =1 n ( x i + ǫx i +1 ) sin( √ x i ) � x ∈ [1 , 500] n − min ( ǫ ∈ { 0 , 1 } ) SWF : i =1 Third year PhD Victor MAGRON Templates SOS

  6. Flyspeck-Like Global Optimization Classical Approach: Taylor + SOS Max-Plus Based Templates Certified Global Optimization with Global Optimization Problems: a Framework Given K a compact set, and f a transcendental function, minor f ∗ = inf x ∈ K f ( x ) and prove f ∗ ≥ 0 f is underestimated by a semialgebraic function f sa 1 We reduce the problem f ∗ sa := inf x ∈ K f sa ( x ) to a polynomial 2 optimization problem in a lifted space K pop (with lifting variables z ) We solve the POP problem f ∗ pop := inf f pop ( x , z ) using 3 ( x , z ) ∈ K pop a hierarchy of SDP relaxations by Lasserre If the relaxations are accurate enough, f ∗ ≥ f ∗ sa ≥ f ∗ pop ≥ 0 . Third year PhD Victor MAGRON Templates SOS

  7. Flyspeck-Like Global Optimization Classical Approach: Taylor + SOS Max-Plus Based Templates Certified Global Optimization with Contents Flyspeck-Like Global Optimization 1 Classical Approach: Taylor + SOS 2 Max-Plus Based Templates 3 Certified Global Optimization with Coq 4 Third year PhD Victor MAGRON Templates SOS

  8. Flyspeck-Like Global Optimization Classical Approach: Taylor + SOS Max-Plus Based Templates Certified Global Optimization with Semialgebraic Optimization Problems Polynomial Optimization Problem (POP): p ∗ := min x ∈ K p ( x ) with K the compact set of constraints: K = { x ∈ R n : g 1 ( x ) ≥ 0 , · · · , g m ( x ) ≥ 0 } Let Σ d [ x ] be the cone of Sum-of-Squares (SOS) of degree at most 2 d : � � � q i ( x ) 2 , with q i ∈ R d [ x ] Σ d [ x ] = i Let g 0 := 1 and M d ( g ) be the quadratic module: � m � � M d ( g ) = σ j ( x ) g j ( x ) , with σ j ∈ Σ[ x ] , ( σ j g j ) ∈ R 2 d [ x ] j =0 Certificates for positive polynomials: Sum-of-Squares Third year PhD Victor MAGRON Templates SOS

  9. Flyspeck-Like Global Optimization Classical Approach: Taylor + SOS Max-Plus Based Templates Certified Global Optimization with Semialgebraic Optimization Problems � M ( g ) := M d ( g ) d ∈ N Proposition (Putinar) Suppose x ∈ [ a , b ] . p ( x ) − p ∗ > 0 on K = ⇒ ( p ( x ) − p ∗ ) ∈ M ( g ) M 0 ( g ) ⊂ M 1 ( g ) ⊂ M 2 ( g ) ⊂ · · · ⊂ M ( g ) Hence, we consider the hierarchy of SOS relaxation � � programs: µ k := sup µ : ( p ( x ) − µ ) ∈ M k ( g ) µ,σ 0 , ··· ,σ m µ k ↑ p ∗ (Lasserre Hierarchy Convergence) Third year PhD Victor MAGRON Templates SOS

  10. Flyspeck-Like Global Optimization Classical Approach: Taylor + SOS Max-Plus Based Templates Certified Global Optimization with Semialgebraic Optimization Problems Example from Flyspeck: Also works for Semialgebraic functions via lifting variables: ∆( x ) = x 1 x 4 ( − x 1 + x 2 + x 3 − x 4 + x 5 + x 6 )+ x 2 x 5 ( x 1 − x 2 + x 3 + x 4 − x 5 + x 6 ) + x 3 x 6 ( x 1 + x 2 − x 3 + x 4 + x 5 − x 6 ) − x 2 ( x 3 x 4 + x 1 x 6 ) − x 5 ( x 1 x 3 + x 4 x 6 ) ∂ 4 ∆ x = x 1 ( − x 1 + x 2 + x 3 − x 4 + x 5 + x 6 )+ x 2 x 5 + x 3 x 6 − x 2 x 3 − x 5 x 6 ∂ 4 ∆ x f ∗ √ 4 x 1 ∆ x sa := min x ∈ [4 , 6 . 3504] 6 Third year PhD Victor MAGRON Templates SOS

  11. Flyspeck-Like Global Optimization Classical Approach: Taylor + SOS Max-Plus Based Templates Certified Global Optimization with Semialgebraic Optimization Problems Example from Flyspeck: � z 1 := 4 x 1 ∆ x , m 1 = x ∈ [4 , 6 . 3504] 6 z 1 ( x ) , M 1 = inf x ∈ [4 , 6 . 3504] 6 z 1 ( x ) . sup K := { ( x , z ) ∈ R 8 : x ∈ [4 , 6 . 3504] 6 , h 1 ( x , z ) ≥ 0 , · · · , h 7 ( x , z ) ≥ 0 } h 4 := − z 2 h 1 := z 1 − m 1 1 + 4 x 1 ∆ x h 2 := M 1 − z 1 h 5 := z 2 z 1 − ∂ 4 ∆ x h 3 := z 2 1 − 4 x 1 ∆ x h 6 := − z 2 z 1 + ∂ 4 ∆ x p ∗ := ( x , z ) ∈ K z 2 = f ∗ inf sa . We obtain µ 2 = − 0 . 618 and µ 3 = − 0 . 445 . Third year PhD Victor MAGRON Templates SOS

  12. Flyspeck-Like Global Optimization Classical Approach: Taylor + SOS Max-Plus Based Templates Certified Global Optimization with Taylor Approximation of Transcendental Functions n ( x i + x i +1 ) sin( √ x i ) � x ∈ [1 , 500] n f ( x ) = − min SWF : Classical idea: approximate sin( √· ) by a degree- d Taylor i =1 n � Polynomial f d , solve x ∈ [1 , 500] n − min ( x i + x i +1 ) f d ( x i ) (POP) i =1 Issues: Lack of accuracy if d is not large enough = ⇒ expensive Branch and Bound POP may involve many lifting variables : depends on semialgebraic and univariate transcendental components of f No free lunch: solving POP with Sum-of-Squares of degree 2 k involves O ( n 2 k ) variables SWF with n = 10 , d = 4 : takes already 38 min to certify a lower bound of − 430 n Third year PhD Victor MAGRON Templates SOS

  13. Flyspeck-Like Global Optimization Classical Approach: Taylor + SOS Max-Plus Based Templates Certified Global Optimization with Contents Flyspeck-Like Global Optimization 1 Classical Approach: Taylor + SOS 2 Max-Plus Based Templates 3 Certified Global Optimization with Coq 4 Third year PhD Victor MAGRON Templates SOS

  14. Flyspeck-Like Global Optimization Classical Approach: Taylor + SOS Max-Plus Based Templates Certified Global Optimization with Max-Plus Estimators Goals: Reduce the O ( n 2 k ) polynomial dependency: decrease the number of lifting variables Reduce the O ( n 2 k ) exponential dependency: use low degree approximations Reduce the Branch and Bound iterations: refine the approximations with an adaptive iterative algorithm Third year PhD Victor MAGRON Templates SOS

  15. Flyspeck-Like Global Optimization Classical Approach: Taylor + SOS Max-Plus Based Templates Certified Global Optimization with Max-Plus Estimators Let ˆ f ∈ T be a transcendental univariate function ( arctan , exp ) defined on an interval I . ˆ f is semi-convex: there exists a constant c j > 0 s.t. f ( a ) + c j / 2( a − a j ) 2 is convex a �→ ˆ By convexity: f ( a ) ≥ − c j / 2( a − a j ) 2 + ˆ ∀ a ∈ I, ˆ f ′ ( a j )( a − a j ) + ˆ f ( a j ) = par − a j ( a ) ∀ j, ˆ f ≥ par − ⇒ ˆ j { par − a j = f ≥ max a j } Max-Plus underestimator Example with arctan : 1 f ′ ( a j ) = ˆ {− ˆ f ′′ ( a ) } (always work) , c j = sup 1 + a 2 a ∈ I j c j depends on a j and the curvature variations of arctan on the considered interval I Third year PhD Victor MAGRON Templates SOS

  16. Flyspeck-Like Global Optimization Classical Approach: Taylor + SOS Max-Plus Based Templates Certified Global Optimization with Max-Plus Estimators Example with arctan : y par + a 2 par + arctan a 1 par − a 2 a a 1 a 2 m M par − a 1 Third year PhD Victor MAGRON Templates SOS

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend