cee 680 lecture 25 3 4 2020
play

CEE 680 Lecture #25 3/4/2020 Print version Updated: 4 March 2020 - PDF document

CEE 680 Lecture #25 3/4/2020 Print version Updated: 4 March 2020 Lecture #25 Dissolved Carbon Dioxide: Open & Closed Systems VI (Stumm & Morgan, Chapt.4 ) Benjamin; Chapter 7 David Reckhow CEE 680 #25 1 Lake Erie David Reckhow


  1. CEE 680 Lecture #25 3/4/2020 Print version Updated: 4 March 2020 Lecture #25 Dissolved Carbon Dioxide: Open & Closed Systems VI (Stumm & Morgan, Chapt.4 ) Benjamin; Chapter 7 David Reckhow CEE 680 #25 1  Lake Erie David Reckhow CEE 680 #25 2 1

  2. CEE 680 Lecture #25 3/4/2020  Lake Taihu David Reckhow CEE 680 #25 3  algae David Reckhow CEE 680 #25 4 2

  3. CEE 680 Lecture #25 3/4/2020  Algal cells David Reckhow CEE 680 #25 5 Photosynthesis Problem  Principles of conservation of Alk and C T  From Stumm & Morgan (example 4.8, pg. 174)  Approach  General: assume that system is closed  Simplified: treat alkalinity as constant  Alternative: allow alkalinity to vary in accordance with reaction stoichiometry David Reckhow CEE 680 #25 6 3

  4. CEE 680 Lecture #25 3/4/2020 Problem Statement  Photosynthesis with nitrate assimilation ‐ + HPO 4 ‐ 2 + 122 H 2 O + 18 H +  106 CO 2 + 16 NO 3 = C 106 H 263 O 110 N 16 P + 138 O 2  Conditions  Initial  Alk = 0.85 meq/L  pH = 9.0  Final (3 hours later)  pH = 9.5  What is the net rate of carbon fixation? David Reckhow CEE 680 #25 7 Simplified Solution: (const. alk.)  Use standard alkalinity equation           Alk 2 C [ OH ] [ H ] 1 2 T 1 1     0 . 9523 1    10 . 3 [ H ]   K 1 10 1 2  So initially:  9 K  10 [ H ] 1 0     Alk [ OH ] [ H ]  C T 1 1        0 . 0477 2 2 1 2  2   9  [ H ]  [ H ]  10 1 1  10 . 3      K K K 10 8 . 5 x 10 4 10 5 10 9 1 2 2  0  0 . 9523 2 ( 0 . 0477 )   4 8 . 017 x 10 M David Reckhow CEE 680 #25 8 4

  5. CEE 680 Lecture #25 3/4/2020 Simplified Solution: (const. alk.) 1 1     0 . 8632  And 3 hours later 1      K 1 10 . 3 [ H ] 10 1 2  9 . 5 K  10 [ H ] 1     Alk [ OH ] [ H ] 0  C T    2 1 1 1 2     0 . 1368      8 . 5 x 10 4 10 4 . 5 10 9 . 5 2  2   9 . 5    1 [ H ] [ H ] 1 10   10 . 3 K K K 10 1 2 2  0 . 8632 2 ( 0 . 1368 ) 0   7 . 199 x 10 4 M  So the rate is:     8 . 017 x 10 4 M 7 . 199 x 10 4 M C T   t 3 hr   5 2 . 7 x 10 M / hr David Reckhow CEE 680 #25 9 Alternative Solution  Allow alkalinity to vary in accordance with reaction    stoichiometry Alk Alk 18 C f i 106 T ‐ + HPO 4 ‐ 2 + 122 H 2 O + 18 H +  106 CO 2 + 16 NO 3 = C 106 H 263 O 110 N 16 P + 138 O 2  Now, incorporating this into the final alkalinity value:           Alk 2 C [ OH ] [ H ] 1 2 T             Alk [ OH ] 2 C C f f 1 2 f T T i        4   4 . 5  4  8 . 5 x 10 18 C 10 1 . 136 8 . 017 x 10 C T T 106    5 1 . 3066 C 9 . 2995 x 10 T    C 7 . 1 x 10 5 T  And the rate becomes:   7 . 1 x 10 5 M C T    5 2 . 4 x 10 M / hr  t 3 hr David Reckhow CEE 680 #25 10 5

  6. CEE 680 Lecture #25 3/4/2020 Buffer Intensity & Closed System              2 . 303 [ OH ] [ H ] C C T 0 1 T 1 2 From: Butler, 1991; pg 67 David Reckhow CEE 680 #25 11 Buffer Intensity & Open System            2 . 303 [ OH ] [ H ] [ HCO ] 4 [ CO 2 ] 3 3 From: Butler, 1991; pg 68 David Reckhow CEE 680 #25 12 6

  7. CEE 680 Lecture #25 3/4/2020  To next lecture DAR David Reckhow CEE 680 #25 13 7

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend