categories of filters as fibered completions
play

Categories of Filters as Fibered Completions Toshiki Kataoka - PowerPoint PPT Presentation

Categories of Filters as Fibered Completions Toshiki Kataoka 2016.08.08 Butz '04, Saturated models of intuitionistic theories Filter logics F F B B satisfies a saturation principle Kataoka (UTokyo) 2


  1. Categories of Filters 
 as Fibered Completions Toshiki Kataoka 2016.08.08

  2. Butz '04, “Saturated models of intuitionistic theories” • Filter logics • 픹 ↪ F 픹 
 → F B B � satisfies a saturation principle Kataoka (UTokyo) 2

  3. Models with 
 saturation principles (classical) • ultrafilter construction � Set Set U � S U S • filter construction [Pitts '83][Palmgren '97] (intuitionistic) F B Sh ( F B ) B � B ( − ) B • [Butz '04] F B B Kataoka (UTokyo) 3

  4. Blass '74, “Two closed categories of filters” • Filt ( 픹 ) , F 픹 Kataoka (UTokyo) 4

  5. • Filt ( 픹 ) , F 픹 Question Why F 픹 has good properties? Why not Filt ( 픹 ) ? Kataoka (UTokyo) 5

  6. Answer categorical models fibrational models ⊆ E ↓ B B Sub ( B ) Filt ( B ) → F B ↓ ↓ B � → � B B [Butz '04] • F 픹 ≅ Filt ( 픹 )[ W -1 ] (localization) Kataoka (UTokyo) 6

  7. Overview 0. Introduction 1. Categories of filters [Koubek & Reiterman '70][Blass '74] 2. Categorical logic for filters [Butz '04] 3. Categorical models vs. fibrational models Kataoka (UTokyo) 7

  8. Overview 0. Introduction 1. Categories of filters [Koubek & Reiterman '70][Blass '74] 2. Categorical logic for filters [Butz '04] 3. Categorical models vs. fibrational models Kataoka (UTokyo) 8

  9. Filters of a semilattice • L : (bounded) (meet-)semilattice Definition F : filter of L def. F ⊆ L : upward closed subset s.t. ⇐ ⇒ • ⊤ ∈ F { • x ∧ y ∈ F if x ∈ F and y ∈ F def. F ≤ G ――― F ⊇ G ⇐ ⇒ Kataoka (UTokyo) 9

  10. Definition F L := { F : filter of L } 
 ≅ SLat ( L , 2) op cat. of cat. of complete semilattices semilattices Theorem F � SLat - SLat � F L L M M Kataoka (UTokyo) 10

  11. Filters on an object • 픹 : category with pullbacks Definition F : filter on I ∈ 픹 def. F : filter of Sub 픹 ( I ) ⇐ ⇒ Kataoka (UTokyo) 11

  12. Definition Filt 픹 ( I ) := { F : filter on I } 
 = F ( Sub 픹 ( I )) Filt B F Sub B B op � SLat - SLat � Kataoka (UTokyo) 12

  13. Two categories of filters [Blass, '74] Filt ( 픹 ) • The category of concrete filters F 픹 • The category of abstract filters Kataoka (UTokyo) 13

  14. Cat. of concrete filters Filt ( 픹 ) • object ( I , F ) ( I ∈ 픹 , F : filter on I ) • morphism in Filt ( B ) u : ( I, F ) → ( J, G ) in B u : I → J ∀ Y ∈ G . u − 1 Y ∈ F Kataoka (UTokyo) 14

  15. Set Filt ( Set ) [Blass '74] Lemma Filt ( B ) ↓ is the Grothendieck construction B from the functor Filt B : B op → � - SLat . Kataoka (UTokyo) 15

  16. Cat. of abstract filters F 픹 • object ( I , F ) ( I ∈ 픹 , F : filter on I ) in F B • morphism [ v ]: ( I, F ) � ( J, G ) is defined as v F � X in B � J � Y � G . v � 1 Y � F (under v − 1 Y ⊆ X ⊆ I ) under def. � v | X �� = v � | X �� ( X �� � X � X � ) [ v ] = [ v � ] � Kataoka (UTokyo) 16

  17. F ( Set ) [Blass '74] Kataoka (UTokyo) 17

  18. Definition F = Colim : B → Set � X ∈ F B ( X, − ) is called the reduced product [K. ?] Lemma op : fully faithful ∏ (_) : F 픹 → ( Set 픹 ) Kataoka (UTokyo) 18

  19. Overview 0. Introduction 1. Categories of filters [Koubek & Reiterman '70][Blass '74] 2. Categorical logic for filters [Butz '04] 3. Categorical models vs. fibrational models Kataoka (UTokyo) 19

  20. First-order logic and 
 its fragments terms t ::= x | f ( t 1 , . . . , t | f | ) ϕ ::= R ( t 1 , . . . , t | R | ) | t 1 = t 2 formulas | � | ϕ 1 � ϕ 2 “left exact logic” | � x. ϕ regular logic | � | ϕ 1 � ϕ 2 coherent logic | ϕ 1 � ϕ 2 | � x. ϕ Kataoka (UTokyo) 20

  21. Categorical models • 픹 : category with finite products • interpretation in 픹 • types ⟦ σ ⟧ ∈ 픹 • function symbols ⟦ f ⟧ ∈ 픹 ( ⟦ σ ⟧ 1 × … × ⟦ σ ⟧ |f| ) • relation symbols ⟦ R ⟧ ∈ Sub 픹 ( ⟦ σ ⟧ 1 × … × ⟦ σ ⟧ |R| ) Kataoka (UTokyo) 21

  22. ⇒ ⇒ ⇒ ⇒ 
 
 • 픹 : left exact category 
 픹 models left exact logics 
 (has finite limits) • 픹 : regular category 
 픹 models regular logics 
 (lex. & has p.b.-stable 
 coequalizers of kernel pairs) • 픹 : coherent category 
 픹 models coherent logics 
 (reg. & has 
 p.b.-stable finite unions) • 픹 : Heyting category 픹 models first-order 
 logics Kataoka (UTokyo) 22

  23. Filter logics [Butz '04] • F 픹 models filter logics t ::= x | f ( t 1 , . . . , t | f | ) ϕ ::= R ( t 1 , . . . , t | R | ) | t 1 = t 2 � | � | ϕ 1 � ϕ 2 | ϕ “left exact filter logic” ϕ ∈ Φ | � x. ϕ regular filter logic | � | ϕ 1 � ϕ 2 coherent filter logic | ϕ 1 � ϕ 2 | � x. ϕ Kataoka (UTokyo) 23

  24. Filter logics [Butz '04] for each ϕ � Φ ψ � ϕ � ψ � � ϕ ∈ Φ ϕ � ϕ 0 ϕ ∈ Φ ϕ ψ � � x. ϕ 1 � · · · � ϕ n for each { ϕ 1 , . . . , ϕ n } � Φ fin. ψ � � x. � ϕ ∈ Φ ϕ saturation � ϕ ∈ Φ ( ψ � ϕ ) � ψ � � ϕ ∈ Φ ϕ Kataoka (UTokyo) 24

  25. Characterization of F 픹 [Blass '74] Lemma Sub F 픹 ( I , F ) ≅ { ( I , G ) | G ≤ F } : complete (meet-)semilattice [Butz '04] Definition 픸 : filtered meet lex category def. 픸 : lex category, ⇐ ⇒ Sub 픸 : 픸 op → ⋀ - SLat Kataoka (UTokyo) 25

  26. [Butz '04] Definition 픸 : filtered meet lex category def. 픸 : lex category, ⇐ ⇒ Sub 픸 : 픸 op → ⋀ - SLat [Butz '04] Theorem Lex : category of 
 F � filt Lex - Lex � lex categories filt - Lex : category of ⋀ F B B filtered meet A A lex categories Kataoka (UTokyo) 26

  27. Filtered meet vs. 
 arbitrary meet arbitrary meets = finite meets + filtered meets � � = ( x 1 ∧ · · · ∧ x n ) x x ∈ X { x 1 ,...,x n } ⊆ X fin. Kataoka (UTokyo) 27

  28. � � � � � x. ϕ ( x ) � ψ ( x ) � � x. ϕ ( x ) � x. ψ ( x ) � ✓ ✗ ✗ arbitrary meets = finite meets + filtered meets � � = ( x 1 ∧ · · · ∧ x n ) x x ∈ X { x 1 ,...,x n } ⊆ X fin. Kataoka (UTokyo) 28

  29. [Butz '04] Definition a filtered meet regular (resp. coherent ) category 
 is a regular (resp. coherent) category with filtered meets s.t. ∃ (and ∨ ) distributes over filtered meets [Butz '04] Theorem F � filt Lex - Lex restricts to � F � filt F � filt Reg - Reg Coh - Coh and � � Kataoka (UTokyo) 29

  30. Filter logics [Butz '04] for each ϕ � Φ ψ � ϕ � ψ � � ϕ ∈ Φ ϕ � ϕ 0 ϕ ∈ Φ ϕ ψ � � x. ϕ 1 � · · · � ϕ n for each { ϕ 1 , . . . , ϕ n } � Φ fin. ψ � � x. � ϕ ∈ Φ ϕ � ϕ ∈ Φ ( ψ � ϕ ) � ψ � � ϕ ∈ Φ ϕ distributive laws Kataoka (UTokyo) 30

  31. Overview 0. Introduction 1. Categories of filters [Koubek & Reiterman '70][Blass '74] 2. Categorical logic for filters [Butz '04] 3. Categorical models vs. fibrational models Kataoka (UTokyo) 31

  32. Fibrational models • | : fibration, 픹 has finite products E ↓ p B • ⟦ R ⟧ ∈ 피 ⟦ σ ⟧ 1 × … × ⟦ σ ⟧ |R| • Generalization of categorical model 픹 (subobject model) Sub ( B ) for B : lex category ↓ B Sub ( B ) � σ 1 � × ··· × � σ | R | � = Sub B ( � σ 1 � × · · · × � σ | R | � ) � � � R � ∈ Kataoka (UTokyo) 32

  33. Fibered completion Filt ( B ) Sub ( B ) • | is the fibered completion of ↓ ↓ B B Filt B recall F Sub B B op � SLat - SLat � Kataoka (UTokyo) 33

  34. Given 픹 : categorical model of 
 a (lex/regular/coherent) logic [Butz '04] • F 픹 is the “free” (categorical) model of its filter logic [K.] Filt ( B ) • | is the “free” fibrational model its filter logic ↓ B Kataoka (UTokyo) 34

  35. Fibrations vs. categories (General preicates vs. subobjects) Sub ( B ) Filt ( B ) Sub ( F B ) id F B B B Kataoka (UTokyo) 35

  36. ∼ Coproducts over = ( ∃ m ) X X monomorphisms m I J Sub ( B ) has ↓ B } for each monomorphism m in 픹 
 � m � m ∗ satisfying the Beck-Chevalley condition ∃ m : coproduct and the Frobenius reciprocity Kataoka (UTokyo) 36

  37. Coproducts over monomorphisms [K.] Lemma Sub ( B )   � m � m ∗ ↓  K B Sub ( B ) Sub ( A ) � � � �  H : morphism of fibrations 
 ↓ ↓ → B A preserving (1, × , ⊤ , ∧ ) � � K K = Sub ( H ) ⇔ preserves ∃ m for m : mono H Kataoka (UTokyo) 37

  38. Left exact fibrations [K.] Definition A left exact fibration 
 E is a fibered poset s.t. ↓ p B • 픹 has finite limits • p has fibered finite meets • p has coproducts over monomorphisms satisfying Frobenius Kataoka (UTokyo) 38

  39. [K.] Theorem L Lex LexFib � � R E L E [ W − 1 ] ↓ B Sub ( A ) ↓ A A E R ↓ B B where W = { ( X → ( ∃ m ) X | m : I � J, X ∈ E I } Kataoka (UTokyo) 39

  40. Localization of a category • Q W : 피 → 피 [ W -1 ] is universal among 
 F : 피 → 픻 s.t. F ( w ): isom. for w ∈ W Kataoka (UTokyo) 40

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend