categorial grammar
play

Categorial Grammar Raffaella Bernardi Contents First Last Prev - PowerPoint PPT Presentation

Categorial Grammar Raffaella Bernardi Contents First Last Prev Next Contents 1 Recognition Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Classical Categorial Grammar. . . . . . . . . . .


  1. Categorial Grammar Raffaella Bernardi Contents First Last Prev Next ◭

  2. Contents 1 Recognition Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Classical Categorial Grammar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Classical Categorial Grammar. Examples . . . . . . . . . . . . . . . . . . . . . 5 4 Logic Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 5 Lambek calculus. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 6 Lambek calculus. Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 7 Lambek calculus. Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 8 Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 9 Residuated and Galois Connected Functions . . . . . . . . . . . . . . . . . . 14 10 Interpretation of the Constants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 11 Nonveridical Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 12 Dutch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 13 Classification of NPIs in Dutch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 14 Antilicensing Relation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Contents First Last Prev Next ◭

  3. 1. Recognition Device ◮ Aim: To build a language recognition device. ◮ Who: Lesniewski (1929), Ajdukiewicz (1935), Bar-Hillel (1953). ◮ How: Linguistic strings are seen as the result of function applications starting from the categories assigned to lexicon items. Contents First Last Prev Next ◭

  4. 2. Classical Categorial Grammar ◮ Language: Given a set of basic categories ATOM , the set of categories CAT is the smallest set such that: ⊲ if X ∈ ATOM , then X ∈ CAT ; ⊲ if X, Y ∈ ATOM , then X/Y, Y \ X ∈ CAT ◮ Rules: The above categories can be composed by means of functional appli- cation rules X/Y, Y ⇒ X MPr Y, Y \ X ⇒ X MPl X/Y Y Y Y \ X [MPl] [MPr] X X Contents First Last Prev Next ◭

  5. 3. Classical Categorial Grammar. Examples Given ATOM = { np, s, n } , we can build the following lexicon: Lexicon John, Mary ∈ np the ∈ np/n student ∈ n some ∈ ( s/ ( np \ s )) /n walks ∈ np \ s sees ∈ ( np \ s ) /np Analysis John walks ∈ s ? ❀ np, np \ s ⇒ s ? Yes np np \ s [MPl] s John sees Mary ∈ s ? np, ( np \ s ) /np, np ⇒ s ? Yes ❀ ( np \ s ) /np np [MPr] np np \ s [MPl] s Contents First Last Prev Next ◭

  6. who knows Lori ∈ n \ n ? ( n \ n ) / ( np \ s ) , ( np \ s ) /np, np ⇒ n \ n ? ❀ knows Lori ( np \ s ) /np np who [MPr] ( n \ n ) / ( np \ s ) np \ s [MPr] n \ n which Sara wrote [ . . . ] ∈ n \ n ? Modus ponens corresponds to functional application. X/Y : t Y : r Y : r Y \ X : t [MPl] [MPr] X : t ( r ) X : t ( r ) Example np : john np \ s : walk [MPl] s : walk ( john ) np \ s : λx. walk ( x ) ( λx. walk ( x ))( john ) ❀ λ − conv. walk ( john ) Contents First Last Prev Next ◭

  7. ( np \ s ) /np : know np : mary [MPr] np : john np \ s : know ( mary ) [MPl] s : know ( mary )( john ) Contents First Last Prev Next ◭

  8. 4. Logic Grammar ◮ Aim: To define the logic behind CG. ◮ How: Considering categories as formulae; \ , / as logic connectives. ◮ Who: Jim Lambek [1958] Lambek Calculus (Rules): Natural Deduction proof format [Elimination and Introduction rules] Besides functional applications rules – which correspond to the elimination of \ , / – we have their introduction rules. Γ ⊢ A means that A derives from Γ; Γ , ∆ stand for structures, A, B, C for logic formulae. ∆ ⊢ B/A Γ ⊢ A Γ ⊢ A ∆ ⊢ A \ B [ / E] [ \ E] ∆ , Γ ⊢ B Γ , ∆ ⊢ B ∆ , B ⊢ C B, ∆ ⊢ C ∆ ⊢ C/B [ / I] ∆ ⊢ B \ C [ \ I] Contents First Last Prev Next ◭

  9. 5. Lambek calculus. Examples which Sara wrote ∈ n \ n ? [ np ⊢ np ] 1 wrote ⊢ ( np \ s ) /np [ / E] Sara ⊢ np wrote np ⊢ np \ s [ \ E] Sara wrote np ⊢ s Sara wrote ⊢ s/np [ / I] 1 which ⊢ ( n \ n ) / ( s/np ) [ / E] which Sara wrote ⊢ n \ n The logical formulas built from ( \ , • / ) are interpreted using Kripke Models as below: { z |∃ x ∃ y [ R 3 zxy & x ∈ V ( A ) & y ∈ V ( B )] } V ( A • B ) = { x |∀ y ∀ z [( R 3 zxy & y ∈ V ( B )) ⇒ z ∈ V ( C )] } V ( C/B ) = { y |∀ x ∀ z [( R 3 zxy & x ∈ V ( A )) ⇒ z ∈ V ( C )] } V ( A \ C ) = NL is sound and complete with respect to Kripke models. Extractions are accounted for by means of introduction rules. Contents First Last Prev Next ◭

  10. john ∈ np Lex np ⊢ np john ⊢ np ❀ Contents First Last Prev Next ◭

  11. 6. Lambek calculus. Semantics [ P ⊢ np \ s : P ] 1 john ⊢ np : john [ \ E] john P ⊢ s : P ( john ) john ⊢ s/ ( np \ s ) : λP.P ( john ) [ / I] 1 [ z ⊢ np : z ] 1 knows ⊢ ( np \ s ) /np : know [ / E] np ⊢ np : john john knows z ⊢ np \ s : know ( z )( john ) [ \ E] john knows z ⊢ s : know ( z )( john ) john knows ⊢ s/np : λz. know ( z )( john ) [ / I] 1 ⇓ The introduction rules correspond to λ -abstraction. Contents First Last Prev Next ◭

  12. 7. Lambek calculus. Advantages ◮ Hypothetical reasoning: Having added [ \ I] , [ / I] gives the system the right expressiveness to reason about hypothesis and abstract over them. ◮ Curry Howard Correspondence: Curry-Howard correspondence holds be- tween proofs and terms. This means that parsed structures are assigned an interpretation into a model via the connection ‘categories-terms’. ◮ Logic: We have moved from a grammar to a logic. Hence its behavior can be studied. The system is sound, complete and decidable. Contents First Last Prev Next ◭

  13. 8. Derivations A ⊢ A A ⊢ B � ✷ ↓ A � ⊢ A [ ✷ ↓ L] � A � ⊢ ✸ B [ ✸ R] ✸✷ ↓ A ⊢ A [ ✸ L] ✸ A ⊢ ✸ B [ ✸ L] A ⊢ B A ⊢ A � ✷ ↓ A � ⊢ B [ ✷ ↓ L] � ✷ ↓ A � ⊢ A [ ✸ R] ✷ ↓ A ⊢ ✷ ↓ B [ ✷ ↓ R] [ ✷ ↓ R] A ⊢ A A ⊢ A A ⊢ A ( A ) 0 ⊢ ♯A [( · ) 0 L] 0 ( A ) ⊢ ♭A [ 0 ( · )L] A ⊢ 0 (( A ) 0 ) [ 0 ( · )R] A ⊢ ( 0 ( A )) 0 [( · ) 0 R] Contents First Last Prev Next ◭

  14. 9. Residuated and Galois Connected Functions Remark 2 Let B ′ be a poset s.t. B ′ = ( B, ⊑ ′ def B ) where x ⊑ ′ B y = y ⊑ B x , and h : B → A . If ( f, h ) is a residuated pair with respect to ⊑ A and ⊑ ′ B , then it’s Galois connected with respect to ⊑ A and ⊑ B . f ( a ) ⊑ ′ b ⊑ B f ( a ) iff B b iff a ⊑ A h ( b ) Recall Consider two posets A = ( A, ⊑ A ) and B = ( B, ⊑ B ), and functions f : A → B, g : B → A . The pair ( f, g ) is said to be residuated iff ∀ a ∈ A, b ∈ B [ RES 1 ] f ( a ) ⊑ B b iff a ⊑ A g ( b ) The pair ( f, g ) is said to be Galois connected iff ∀ a ∈ A, b ∈ B [ GC 1 ] b ⊑ B f ( a ) iff a ⊑ A g ( b ) Contents First Last Prev Next ◭

  15. 10. Interpretation of the Constants { x | ∃ y ( R 2 V ( ✸ A ) = ✸ xy & y ∈ V ( A ) } { x | ∀ y ( R 2 V ( ✷ ↓ A ) = ✸ yx ⇒ y ∈ V ( A ) } { x | ∀ y ( y ∈ V ( A ) ⇒ ¬ R 2 V ( 0 A ) = 0 yx } { x | ∀ y ( y ∈ V ( A ) ⇒ ¬ R 2 V ( A 0 ) = 0 xy } { z |∃ x ∃ y [ R 3 zxy & x ∈ V ( A ) & y ∈ V ( B )] } V ( A • B ) = { x |∀ y ∀ z [( R 3 zxy & y ∈ V ( B )) ⇒ z ∈ V ( C )] } V ( C/B ) = { y |∀ x ∀ z [( R 3 zxy & x ∈ V ( A )) ⇒ z ∈ V ( C )] } V ( A \ C ) = Contents First Last Prev Next ◭

  16. 11. Nonveridical Functions definition [(Non)veridical functions (II)] → Let ( a n , t ) stand for a boolean type ( a 1 , ( . . . ( a n , t ) . . . )) where a 1 , . . . , a n are arbitrary types and 0 ≤ n . Let f ( a ,t ) be a constant. → 1. The expression represented by f is veridical in its i -argument, if a i is a boolean → type, i.e . a i = ( b, t ), and ∀M , g → → y → y → [ [ f ( x a 1 , . . . , x a i − 1 , x ( b ,t ) , x a i +1 , . . . , x a n )] ] M ,g = 1 entails [ [ ∃ b .x ( b ,t ) ( b )] ] M ,g = 1 . → → Otherwise f is nonveridical. 2. A nonveridical function represented by f ( a ,t ) is antiveridical in its i -argument, → → if a i = ( b, t ) and ∀M , g → → y → y → [ [ f ( x a 1 , . . . , x a i − 1 , x ( b ,t ) , x a i +1 , . . . , x a n )] ] M ,g = 1 entails [ [ ¬∃ . b x ( b ,t ) ( b )] ] M ,g = 1 . → → Contents First Last Prev Next ◭

  17. → y empty. Notice that the base case of a i = t is obtained by taking Contents First Last Prev Next ◭

  18. 12. Dutch In [van Wouden] it is shown that in Dutch polarity items are sensitive to downward monotonicity. Among downward monotone functions we can distinguish the sets below: antimorphic antiadditive downward monotone f ( X ∩ Y ) = f ( X ) ∪ f ( Y ) f ( X ) ∪ f ( Y ) ⊆ f ( X ∩ Y ) f ( X ) ∪ f ( Y ) ⊆ f ( X ∩ Y ) f ( X ∪ Y ) = f ( X ) ∩ f ( Y ) f ( X ∪ Y ) = f ( X ) ∩ f ( Y ) f ( X ∪ Y ) ⊆ f ( X ) ∩ f ( Y ) not nobody, never, nothing few, seldom, hardly Contents First Last Prev Next ◭

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend