casimir effect and the quark anti quark potential zolt an
play

Casimir effect and the quarkanti-quark potential Zolt an Bajnok , - PowerPoint PPT Presentation

Gauge/gravity duality, Munich, July 30, 2013 Casimir effect and the quarkanti-quark potential Zolt an Bajnok , MTA-Lend ulet Holographic QFT Group, Wigner Research Centre for Physics, Hungary with L. Palla, G. Tak acs, J. Balog, A.


  1. Gauge/gravity duality, Munich, July 30, 2013 Casimir effect and the quark–anti-quark potential Zolt´ an Bajnok , MTA-Lend¨ ulet Holographic QFT Group, Wigner Research Centre for Physics, Hungary with L. Palla, G. Tak´ acs, J. Balog, A. Heged˝ us, G.Zs. T´ oth 1

  2. Gauge/gravity duality, Munich, July 30, 2013 Casimir effect and the quark–anti-quark potential Zolt´ an Bajnok , MTA-Lend¨ ulet Holographic QFT Group, Wigner Research Centre for Physics, Hungary with L. Palla, G. Tak´ acs, J. Balog, A. Heged˝ us, G.Zs. T´ oth T anti−quark L quark space q time q � W � = e − TV q ¯ q ( L,λ ) = e − TE 0 ( L,λ ) extra dimension L

  3. Gauge/gravity duality, Munich, July 30, 2013 Casimir effect and the quark–anti-quark potential Zolt´ an Bajnok , MTA-Lend¨ ulet Holographic QFT Group, Wigner Research Centre for Physics, Hungary with L. Palla, G. Tak´ acs, J. Balog, A. Heged˝ us, G.Zs. T´ oth � d ˜ p p ) e − 2 E (˜ p ) L ) E 0 ( L ) = − 2 π log(1 + R ( − ˜ p ) R (˜ d � k ( L ) ω ( k ( L )) F ( L ) = dE 0 ( L ) = dL 2 dL

  4. Motivation: Casimir-Polder effect Hendrik Casimir Dirk Polder colloidal solution: neutral atoms force not like Van der Waals = − � cπ 2 F ( L ) A 240 L 4 not a theoretical curiosity! 2

  5. Motivation: Casimir-Polder effect Hendrik Casimir Dirk Polder colloidal solution: neutral atoms force not like Van der Waals = − � cπ 2 F ( L ) A 240 L 4 Gecko legs not a theoretical curiosity!

  6. Motivation: Casimir-Polder effect Hendrik Casimir Dirk Polder colloidal solution: neutral atoms force not like Van der Waals Airbag trigger chip = − � cπ 2 F ( L ) A 240 L 4 Gecko legs not a theoretical curiosity!

  7. Motivation: Casimir-Polder effect Hendrik Casimir Dirk Polder colloidal solution: neutral atoms micromechanical force not like Van der Waals device: pieces stick Airbag trigger chip = − � cπ 2 F ( L ) friction, levitation A 240 L 4 Gecko legs not a theoretical curiosity!

  8. Motivation: Casimir-Polder effect Hendrik Casimir Dirk Polder colloidal solution: neutral atoms micromechanical force not like Van der Waals device: pieces stick Airbag trigger chip = − � cπ 2 F ( L ) friction, levitation A 240 L 4 Gecko legs not a theoretical curiosity! Maritime analogy:

  9. Aim: understand/describe planar Casimir effect 3

  10. Aim: understand/describe planar Casimir effect Usual explanation: energy of the vacuum: E 0 ( L ) = 1 k ( L ) ω ( k ( L )) ∝ ∞ � 2

  11. Aim: understand/describe planar Casimir effect Usual explanation: energy of the vacuum: E 0 ( L ) = 1 k ( L ) ω ( k ( L )) ∝ ∞ � 2 ∆ E 0 ( L ) E 0 ( L ) − E 0 ( ∞ ) − 2 E plate = ∆ E 0 ( L ) ; A

  12. Aim: understand/describe planar Casimir effect Usual explanation: energy of the vacuum: E 0 ( L ) = 1 k ( L ) ω ( k ( L )) ∝ ∞ � 2 ∆ E 0 ( L ) E 0 ( L ) − E 0 ( ∞ ) − 2 E plate = ∆ E 0 ( L ) ; A Lifshitz formula: QED, Parallel dielectric slabs ( ǫ 1 , 1 , ǫ 2 ) � ∞ ǫ 2 ω 2 − q 2 e − 2 L √ � ω 2 − q 2 − ǫ 1 ω 2 − q 2 ω 2 − q 2 − ǫ 2 ω 2 − q 2 � � � � � d 2 q ∆ E 0 ( L ) 1 − ǫ 1 ǫ 2 q 2 + ζ 2 = 8 π 2 dζ log ω 2 − q 2 + ǫ 1 ω 2 − q 2 ω 2 − q 2 + � � � � A ǫ 1 ǫ 2 0 � ∞ ǫ 2 ω 2 − q 2 e − 2 L √ � ω 2 − q 2 − ǫ 1 ω 2 − q 2 ω 2 − q 2 − ǫ 2 ω 2 − q 2 � � � � � d 2 q q 2 + ζ 2 + 8 π 2 dζ log 1 − ω 2 − q 2 + ǫ 1 ω 2 − q 2 ω 2 − q 2 + � � � � 0

  13. Aim: understand/describe planar Casimir effect Usual explanation: energy of the vacuum: E 0 ( L ) = 1 k ( L ) ω ( k ( L )) ∝ ∞ � 2 ∆ E 0 ( L ) E 0 ( L ) − E 0 ( ∞ ) − 2 E plate = ∆ E 0 ( L ) ; A Lifshitz formula: QED, Parallel dielectric slabs ( ǫ 1 , 1 , ǫ 2 ) � ∞ ǫ 2 ω 2 − q 2 e − 2 L √ � ω 2 − q 2 − ǫ 1 ω 2 − q 2 ω 2 − q 2 − ǫ 2 ω 2 − q 2 � � � � � d 2 q ∆ E 0 ( L ) 1 − ǫ 1 ǫ 2 q 2 + ζ 2 = 8 π 2 dζ log ω 2 − q 2 + ǫ 1 ω 2 − q 2 ω 2 − q 2 + � � � � A ǫ 1 ǫ 2 0 � ∞ ǫ 2 ω 2 − q 2 e − 2 L √ � ω 2 − q 2 − ǫ 1 ω 2 − q 2 ω 2 − q 2 − ǫ 2 ω 2 − q 2 � � � � � d 2 q q 2 + ζ 2 1 − + 8 π 2 dζ log ω 2 − q 2 + ǫ 1 ω 2 − q 2 ω 2 − q 2 + � � � � 0 L Physics can be understood in 1+1 D QFT integrability helps to solve the problem even exactly

  14. A simple calculation e ikx −ikx R e Free bulk + interacting boundaries (QED) − −ikx e ikx R e + L E 0 ( L ) = 1 k ( L ) ω ( k ( L )) � Q ( k ) = e 2 ikL R − ( k ) R + ( − k ) − 1 = 0 2 4

  15. A simple calculation e ikx −ikx R e Free bulk + interacting boundaries (QED) − −ikx e ikx R e + L E 0 ( L ) = 1 k ( L ) ω ( k ( L )) � Q ( k ) = e 2 ikL R − ( k ) R + ( − k ) − 1 = 0 2 C i E 0 ( L ) = 1 2 πi ω ( k ) d dk � dk log Q � j j 2 k i k

  16. A simple calculation e ikx −ikx R e Free bulk + interacting boundaries (QED) − −ikx e ikx R e + L E 0 ( L ) = 1 k ( L ) ω ( k ( L )) � Q ( k ) = e 2 ikL R − ( k ) R + ( − k ) − 1 = 0 2 C i E 0 ( L ) = 1 2 πi ω ( k ) d dk � dk log Q � j j 2 k i k C + � dk dω ( k ) E 0 ( L ) = 1 log Q � 2 2 πi dk k i k + , − C −

  17. A simple calculation e ikx −ikx R e Free bulk + interacting boundaries (QED) − −ikx e ikx R e + L E 0 ( L ) = 1 k ( L ) ω ( k ( L )) � Q ( k ) = e 2 ikL R − ( k ) R + ( − k ) − 1 = 0 2 C i E 0 ( L ) = 1 2 πi ω ( k ) d dk � dk log Q � j j 2 k i k C + � dk dω ( k ) E 0 ( L ) = 1 log Q � 2 2 πi dk k i k + , − C − C � dk dω ( k ) E 0 ( L ) = e bulk L + e bdry + log Q 2 πi dk k i k

  18. A simple calculation e ikx −ikx R e Free bulk + interacting boundaries (QED) − −ikx e ikx R e + L E 0 ( L ) = 1 k ( L ) ω ( k ( L )) � Q ( k ) = e 2 ikL R − ( k ) R + ( − k ) − 1 = 0 2 C i E 0 ( L ) = 1 2 πi ω ( k ) d dk � dk log Q � j j 2 k i k C + � dk dω ( k ) E 0 ( L ) = 1 log Q � 2 2 πi dk k i k + , − C − C � dk dω ( k ) E 0 ( L ) = e bulk L + e bdry + log Q 2 πi dk k i k −i ω C � d ˜ ǫ (˜ k k ) e − 2˜ k ) L ) E ren 2 π log(1 − R − (˜ k ) R + ( − ˜ ( L ) = 0 k i k

  19. A simple calculation e ikx −ikx R e Free bulk + interacting boundaries (QED) − −ikx e ikx R e + L E 0 ( L ) = 1 � k ( L ) ω ( k ( L )) Q ( k ) = e 2 ikL R − ( k ) R + ( − k ) − 1 = 0 2 C i E 0 ( L ) = 1 2 πi ω ( k ) d dk � � dk log Q j j 2 k i k C + � dk dω ( k ) E 0 ( L ) = 1 � log Q 2 2 πi dk k i k + , − C − C � dk dω ( k ) E 0 ( L ) = e bulk L + e bdry + log Q 2 πi dk k i k −i ω C � d ˜ ǫ (˜ k k ) e − 2˜ k ) L ) E ren 2 π log(1 − R − (˜ k ) R + ( − ˜ ( L ) = 0 k i k interacting but integrable: similar formula

  20. Integrable boundary field theory: Bootstrap 5

  21. Integrable boundary field theory: Bootstrap Boundary multiparticle state: with n particles �� �� v 1 v 2 �� �� > > ... > v n > 0 �� �� �� �� �� �� �� �� �� �� �� ��

  22. Integrable boundary field theory: Bootstrap Boundary one particle state: � � v 1 � � � � � � � � � � � � � �

  23. Integrable boundary field theory: Bootstrap Boundary one particle in state: t → −∞ � � � � v 1 � � � � � � � � � � � �

  24. Integrable boundary field theory: Bootstrap Boundary one particle in state: t → −∞ times develop � � � � � � v 1 v 1 � � � � � � � � � � � � � � � � � � � � � � � � � �

  25. Integrable boundary field theory: Bootstrap Boundary one particle in state: t → −∞ times develop further � � � � � � v 1 v 1 � � � � � � � � � � � � � � � � � � � � � � � � � �

  26. Integrable boundary field theory: Bootstrap Boundary one particle in state: t → −∞ Boundary one pt out state: t → ∞ � � � � � � v 1 � � v 1 � � � � � � � � � � � � � � � � � � � � � � � �

  27. Integrable boundary field theory: Bootstrap Boundary one particle in state: t → −∞ Boundary one pt out state: t → ∞ � � � � �� �� � � �� �� v 1 � � v 1 �� �� � � �� �� � � �� �� � � �� �� � � �� �� θ � � �� �� � � �� �� �� �� � � � � �� �� �� �� � � � � � � � �

  28. Integrable boundary field theory: Bootstrap Boundary one particle in state: t → −∞ Boundary one pt out state: t → ∞ � � � � �� �� � � �� �� v 1 � � v 1 �� �� � � �� �� � � �� �� � � �� �� � � �� �� θ � � �� �� � � �� �� �� �� � � � � �� �� �� �� � � � � � � � � Free in particle Free out particle

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend