case study iv geometrical modeling of the heart and the
play

Case Study IV: Geometrical Modeling of the heart and the head - PowerPoint PPT Presentation

Case Study IV: Geometrical Modeling of the heart and the head Moritz Dannhauer Motivation Geometrical modeling for simulation Mesh Content Meshing BioMesh3D new Meshing Approach: Cleaver Pipeline Seg3D Shapeworks Image


  1. Case Study IV: Geometrical Modeling of the heart and the head Moritz Dannhauer

  2. Motivation • Geometrical modeling for simulation Mesh

  3. Content • Meshing • BioMesh3D • new Meshing Approach: Cleaver

  4. Pipeline Seg3D Shapeworks Image ¡Acq. ¡& BioMesh3D Processing Discrete ¡points e.g., ¡sensors SegmentaAon ¡& ¡ Structure ¡IdenAficaAon Geometric ¡Modeling SCIRun & ¡Fi;ng ¡Structures Boundary ¡ Meshing condiAons Volume ¡Modeling Measured ¡ Data V i s u a SimulaAon/EsAmaAon l i z ImageVis3D a A o n n u map3D R VerificaAon/ValidaAon I C S

  5. Meshing CAD-based Meshing

  6. Meshing CAD- based Meshing

  7. Three Scenarios • Low detail models • Medium detail models • High detail models

  8. Challenges of Meshing irregular features multi-material adaptive mesh run time etc. small meshes

  9. What is BioMesh3D? • Tetrahedral conforming volume meshing • Adaptive, multi material, subvoxel accuracy • Goal: Determine accurate boundary surfaces • Tetrahedralization (external): TetGen M. Meyer et. al, IEEE, 2008

  10. Meshing in Biology Non-manifold Interfaces

  11. Conformal Meshing Non-Conformal Conformal Mesh Mesh A B

  12. Conformal Meshes better? Non-Conformal Conformal Mesh Mesh A B Still an open question!

  13. Meshing packages and many more ...

  14. Example - Heart • Oxford Rabbit Heart (BioMesh3D )

  15. Cross Section of Heart BioMesh3D Tarantula

  16. Comparison - Run Time BioMesh3D Tarantula 30 24 22.5 Time in 15 [hours] 7.5 0.5 0

  17. Comparison - Complexity BioMesh3D Tarantula 6 5.9 4.5 Mesh 4.4 nodes in 3 [xMillion] 1.5 0

  18. Comparison - Adaptivity BioMesh3D Tarantula 200000 175028 Size variability 150000 of FE - Stddev. of 100000 Volumes in [uM^3] 50000 39171 0

  19. Comparison - Element Quality scaled inscribed (I) to BioMesh3D Regular Tarantula circumscribed ratio (C) optimal Elements (SICR) 1 1 SICR= 3*I/C 0.75 0.71 C 0.65 I SICR 0.5 0.25 Flat 0

  20. BioMesh3D-Pros/Cons Single Time Point • Pro: Local refinement • Con: Reaction/Diffusion

  21. BioMesh3D - Properties Pros: Cons: - Robustness + Conforming - Usability + Highly Adaptive - Run time + Preserve smooth/ - Sufficient node density small features - Element Quality

  22. New meshing Approach: “Cleaver” min(SICR)>=const "Lattice Cleaving: Conforming Tetrahedral Meshes of Multimaterial Domains with Bounded Quality” Bronson, J., Levine, J., and Whitaker, R. To appear in Proceedings of the 21st International Meshing Roundtable (San Jose, CA, Oct 7 - 10, 2012)

  23. Element quality • Dihedral Angle • Condition number

  24. Comparison - Torso Cleaver Mesh Result

  25. Comparison - Torso Cleaver BioMesh3D CGAL 8 1E+10 1E+09 2.94E+09 1E+08 6 1E+07 2.42E+07 5.42E+06 1E+06 4 7.4 1E+05 1E+04 2 1E+03 0.4 1E+02 0 0 1E+01 Condition min(Dihedral Angle) number

  26. Comparison - Head 8 Materials

  27. Comparison - Head BioMesh3D Cleaver Mesh Time in nodes in [hours] [xMillion] 9 200 8.6 168 6.75 150 6.4 4.5 100 2.25 50 0.7 0 0

  28. Cleaver in Action

  29. Cleaver • First Release: Fall 2012 • Features: • Incredibly fast • Conforming • Guarantees on Quality • Input support: SCIRun - NRRD • Output supports: • SCIRun pts/elems • TetGen node/eles • MATLAB Binaries

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend