carbon based electronics will there be a carbon age to
play

Carbon-Based Electronics: Will there be a carbon age to follow the - PowerPoint PPT Presentation

Carbon-Based Electronics: Will there be a carbon age to follow the silicon age? Jeffrey Bokor EECS Department UC Berkeley jbokor@eecs.berkeley.edu Solid State Seminar 9-13-13 1 Outline Review of development of Carbon Nanotube (CNT)


  1. Carbon-Based Electronics: Will there be a carbon age to follow the silicon age? Jeffrey Bokor EECS Department UC Berkeley jbokor@eecs.berkeley.edu Solid State Seminar 9-13-13 1

  2. Outline • Review of development of Carbon Nanotube (CNT) transistors (for logic) – Issues, progress, prospects • Advent of graphene – Recognition of promise of graphene nanoribbons (GNRs) for logic transistors – Issues, progress, prospects • Summary of prospects for carbon transistors 2

  3. 3 C60: Birth of carbon Nanotech era

  4. Main properties of carbon nanotubes predicted before discovery! semiconductor Applied Physics Letters metal 4

  5. Single-wall carbon nanotubes discovered in carbon ‘soot’ by TEM Iijima and Ichihashi, Nature (1993) [NEC] 5

  6. CNT Transistor Laser vaporization method for CNT synthesis Tans, et al., Nature (1998) [Dekker group, Delft] 6

  7. Catalytic CVD growth of CNTs on a surface Catalyst: Fe(NO3)3 ⋅ 9H2O/alumina/methanol suspension CVD at 1000C with methane Kong, et al, Nature (1998) [Dai group, Stanford] 7

  8. Self-Aligned Ballistic FETs w/High-k 0.2 V V DS = -0.1,-0.2,-0.3 V -5 10 d~1.7 nm -5 L ~ 50 nm -0.1 V -6 10 I DS (  A) -10 -I DS (A) -7 10 -0.4 V -15 -8 10 -0.7 V -20 -9 -1.0 V 10 -1.3 V -25 -0.4 -0.3 -0.2 -0.1 0.0 -1.5 -1.0 -0.5 0.0 0.5 V DS (V) V G (V) • Pd zero-barrier height contact • > 5 mA/um at V g = V DS =0.4V Javey, et al, Nano Lett. (2004) [Dai group, Stanford] 8

  9. High Performance p- and n-FETS • Doping by adsorption • Lg = 80nm Javey, et al, Nano Lett. (2005) [Dai group, Stanford] 9

  10. CNT-CMOS Integration Chip  NMOS binary tree 11-bit decoder  2048 back-gated CNT transistors  >4000 Si NMOS transistors, 1  m Microlab baseline process Tseng, et al, Nano Lett. (2004) [UCB/Stanford, Bokor/Dai groups] 10

  11. Carbon Nanotube + Silicon MOS Integrated Circuit I on 1x10 -5 10 -6 Id (A) Total: 523 devices 150 10 -7 Semiconducting 10 -8 I min nanotubes only 100 -15 -10 -5 0 5 10 15 Vgs (V) counts 209 Devices 50 Tseng, et al, Nano Lett. (2004) [UCB/Stanford, Bokor/Dai groups] 0 0 1 2 3 4 5 6 7 Log (on/off) 11

  12. Direct correlation to diameter variation 1 tube per device Ion, Vgs-Vt=-7v 1x10 -6 1x10 -7 1x10 -5 1x10 -8 Ion (A) Imin (A) 1x10 -9 1x10 -10 10 -6 Measurement Limit 10 -11 10 -12 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Diameter (nm) Diameter (nm) d=2.9nm d=2.2nm 1x10 -5 d=1.1nm 1x10 -6 Tseng, et al, Nano Lett. (2006) 1x10 -7 [UCB, Bokor group] Id (A) 1x10 -8 1x10 -9 1x10 -10 10 -11 -15 -10 -5 0 5 10 15 Vgs (V) 12

  13. Parallel Tube CNTs • To get large drive, need to stack multiple tubes in parallel with common contacts, gate • Do parallel array currents add? • How close can tubes be stacked? • Important for ultimate circuit application 13

  14. Parallel Array of Self-Aligned Ballistic FETs -4 10 G D -6 -I DS (A) 10 -8 10 V DS = -0.1,-0.2,-0.3 V S -10 10 -1 0 1 V G (V) S G -50 D I DS (  A) -100 G -150 S V GS = -0.9 to 0.3 V SWNT S in 0.2 V steps -200 G -0.6 -0.4 -0.2 0.0 D V DS (V) Javey, et al., 1 st demonstration of a parallel array Nano Lett. (2004) • [Stanford, Dai group] • ~200 uA of current for the array of 8 tubes. 14

  15. CNT Array Density Limited by Screening Wang, et al. SISPAD (2003) [IBM] 15

  16. CNT Array Transistor Circuit Performance Jie, et al., ISSSC (2007) [Stanford/USC, Wong/Mitra/Zhou groups] 16

  17. Vision for CNT channel array MOSFETs CNTs CNTs or or SNWs SNWs S S Metal Metal D D Gate Gate HfO 2 HfO 2 pitch pitch L g L g L gc L gc Gate Dielectric k 1 Gate Dielectric k 1 Bulk Dielectric k 2 Bulk Dielectric k 2 Substrate Substrate • Array of 1D channels, densely packed • Density 200-250 per  m • No metallic tubes • Narrow diameter distribution 17

  18. A Multiple Growth Strategy to High Densities • Single-crystal quartz growth substrate • “Epitaxial” CNT growth Hong, et al, Adv. Mat. (2010) • Layer transfer to Si wafer [UIUC, Rogers group] 18

  19. Density Scaling by Multiple Transfers Removal of m-tubes by ‘breakdown’ as grown: 15/um transferred: 15/um 2X transfer: 29/um 4X transfer: 55/um Wang, et al., Nano Res. (2010) [USC, Chou group] 19

  20. Selective Removal of m-tubess From Aligned Arrays Coat with small Induce Joule heating O 2 plasma Remove film and molecule film selectively in m ‐ SWNTs etch exposed electrodes; build to form trenches by m ‐ SWNTs circuits on thermocapillarity remaining s ‐ SWNTs M S M S M S M S S S S S SiO 2 SiO 2 SiO 2 SiO 2 Si (p ++ ) Si (p ++ ) Si (p ++ ) Si (p ++ ) J. Rogers group, UIUC 20

  21. Dynamics of Thermocapillary Flow Joule Heating by a SWNT ( ∆ T~5-15C) Heating options: • Gated electrical Joule heating • Selective laser absorption • Selective microwave absorption Jin, et al., Nat. Nano. (2013) [UIUC, Rogers group] t= 0 0.1 1 10 100 300 s 2  m 21

  22. Solution phase nanotube ‘sorting’/purification “Density gradient” centrifugation Arnold, et al., Nat. Nano. (2006) [Northwestern, Hersam group] 22

  23. Electrical results on sorted CNTs Percolating network transistor Sorted tube transistor high on/off ratio Arnold, et al., Nat. Nano. (2006) [Northwestern, Hersam group] 23

  24. DNA sequence specific wrapping for sorting “size exclusion” chromatography Tu, et al., Nature (2009) [Dupont, Zheng group] 24

  25. Purified Single Chirality (10,5) SWNTs (10,5) Separated SWNTs (10,5) 200nm Starting HiPco material Zhang, et al, JACS (2009), [Stanford/Dupont, Dai/Zheng groups] DNA used: (TTTA)3T 25

  26. FETS with 99% Semiconducting Tubes Mostly (10,5) SWNTs Purely Percentage(%) 40 S semiconducting 30 Mixed 20 100nm 10 D 0 < 2 2-4 4-6 > 6 lo g ( I o n /I o ff ) -5 Average 15 tubes per 10 -6 10 device -7 10 Ion/Ioff >10 2 : 88% -8 10 semiconducting -I ds (A) -9 10 -10 tubes: 10 99% (0.99 15 ~ 88%) -11 10 1000mV -12 10 500mV 100mV -13 10 10mV -14 10 Zhang, et al, JACS (2009), -2 -1 0 1 2 V gs (V) [Stanford/Dupont, Dai/Zheng groups] 26

  27. Solution phase array assembly by Langmuir- Blodgett technique Li, et al. JACS (2007) [Stanford, Dai group] ~70/um ~80/um 27

  28. Solution processed CNTs are as good as CVD tubes at nanoscale Lg CVD tubes Franklin and Chen, Nat. Nano. (2010) [IBM Choi, et al., ACS Nano (2013) [UCB, Bokor/Javey groups] 28

  29. Ultimate scaling study M. Luisier (Purdue) Also DG AGNR SG AGNR GAA CNT GAA NW DG UTB 29

  30. Simulation parameters and assumptions Device Characteristics: - All: L g =5nm, V DD =0.5 V, EOT=0.64nm (3.3nm of HfO 2 with ε R =20) - SG and DG AGNR: width=2.2nm, normalization by width - GAA CNT: diameter=1.58, 1.0, and 0.6 nm, normalization by diameter GAA and  -NW: Si, diameter=3nm, transport=<110>, 1% uniaxial strain - - DG UTB: Si, body=3nm,, transport=<110>, 1% uniaxial strain Simulation Approach: - Same quantum transport simulator for all devices based on Non-equilibrium Green’s Functions (NEGF) formalism with atomistic resolution of simulation domain and finite element method for Poisson equation Bandstructure model: single-p z for carbon and sp 3 d 5 s * for silicon (tight-binding) - - Ballistic limit of transport (no electron-phonon scattering nor interface roughness taken into account) - Intrinsic device performances (no contact series resistances included) - No gate leakage currents included - No structure optimization for any of the selected devices 30

  31. I d -V gs at V ds =0.5V in carbon-based Devices AGNR width: 2.2nm / CNT diameter: 1.58nm / Band Gap E g =0.56 eV HfO 2 SiO 2 EOT=0.64nm EOT=0.64nm • Same EOT gives very different electrostatic gate-channel coupling M. Luisier (Purdue) 31

  32. Gate Dielectric Effect In Carbon-Based Devices Comparison of Conduction Band Edge and Spectral Current in Single-Gate AGNR with 0.64nm SiO 2 ( ε R =3.9) and 3.3nm HfO 2 ( ε R =20) => same EOT=0.64nm OFF- state SiO 2 HfO 2 • Effective channel length is longer for the thicker HfO 2 • Barrier widens and tunneling current drops 32

  33. Extreme (sub-10 nm S-D Tunneling regime) d=1.58 nm CNT FETs Transfer Characteristics Sub-threshold swing 3.3nm HfO 2 EOT=0.64nm V ds =0.5V V ds =0.5V d=1.58 nm 5nm ≤ L g ≤ 12nm • Bandgap 0.56 eV GAA- CNT (d=1.58 nm) scales poorly M. Luisier, et al., IEDM (2011) [Purdue/MIT/UCB, Lundstrom/Antoniadis/Bokor groups] 33

  34. Gate-length trend for 1 nm CNTs Transfer Characteristics Sub-threshold Slope • Bandgap 0.8 eV GAA- CNT (d=1.0 nm) scales better M. Luisier, et al., IEDM (2011) [Purdue/MIT/UCB, Lundstrom/Antoniadis/Bokor groups] 34

  35. Gate-length trend for 0.6 nm CNTs I d -V gs at V ds =0.5V in CNT FETs with d=0.6nm and 5 ≤ L g ≤ 12 nm Transfer Characteristics Sub-threshold Slope • Bandgap 1.4 eV GAA- CNT (d=0.6 nm) scales well M. Luisier, et al., IEDM (2011) [Purdue/MIT/UCB, Lundstrom/Antoniadis/Bokor groups] 35

  36. Comparison of different channel materials I d -V gs at V ds =0.5V in CNT, NW, and UTB Devices 3.3nm HfO 2 , EOT=0.64nm • CNT with d=0.6nm and NW with d=3nm have same band gap E g =1.4eV • CNT with d=1.0nm has band gap E g =0.817eV • Bandgap 0.8 eV GAA-CNT (d=1.0 nm) scales poorly • Bandgap 1.4 eV GAA-CNT (d=0.6 nm) scales well • Si NW (d=3 nm) scales very well due to high-mass and band-gap 36

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend