candles for the study for double beta decay of 48 ca
play

CANDLES for the study for Double Beta Decay of 48 Ca UMEHARA Saori - PowerPoint PPT Presentation

CANDLES for the study for Double Beta Decay of 48 Ca UMEHARA Saori umehara@rcnp.osaka-u.ac.jp CANDLES collaboration Osaka University, University of Fukui, University of Tokushima, Hiroshima University, Saga University, Kyoto San-gyo University


  1. CANDLES for the study for Double Beta Decay of 48 Ca UMEHARA Saori umehara@rcnp.osaka-u.ac.jp CANDLES collaboration Osaka University, University of Fukui, University of Tokushima, Hiroshima University, Saga University, Kyoto San-gyo University 48 Ca Enrichment Tokyo Institute of Technology, Sophia University

  2. Outline Double beta decay of 48 Ca ELEGANT VI system (previous system) = CaF 2 (Eu) scintillators + CsI(Tl) scintillators system CANDLES System = CaF 2 (pure) scintillators + Liquid scintillator system CANDLES III system at Kamioka underground lab. Pre-measurement for performance test R&D Mass Spectrum of Calcium Summary 40 Ca 42 Ca 43 Ca 44 Ca 46 Ca 48 Ca × 10 × 0.1 × 0.1 × 0.1 × 0.001 × 0.1 UMEHARA Saori, 16 th Nov. 2011, DBD11

  3. Double Beta Decay Neutrino-less double beta decay Double Beta Decay  Neutrino-less double beta decay  Very rare decay T 1/2 > (~10 25 years) nucleus If observed Neutrino → Majorana particle  Lepton number violation Decay rate T 1/2 ∝ 1/m  2 We have studied double beta decay of 48 Ca UMEHARA Saori, 16 th Nov. 2011, DBD11

  4. Double Beta Decay of 48 Ca Why 48 Ca? Higher Q  -value(4.27MeV) . . . 76 Ge(2.0MeV), 100 Mo(3.0MeV), 130 Te(2.5MeV) → Low background because Q  -value is higher than BG E max =2.6MeV( 208 Tl,  -ray) 3.3MeV( 214 Bi,  -ray) We have developed the detector system for no background measurement Double beta decay of 48 Ca by CaF 2 scintillators ELEGANT VI system Scale up CANDLES series

  5. ELEGANT VI ELEGANT VI ELEctron Gamma-ray Neutrino Telescope Schematic drawing of ELEGANT VI CaF 2 (Eu) CaF 2 Scintillator (CaF 2 (Eu)) 23 Crystals(45 × 45 × 45cm 3 :290g) CaF 2 (pure) Source of  Decay : 48 Ca CsI(Tl) (Q  =4.27MeV) veto counters 46 CaF 2 (pure) 38 CsI(Tl) → 4  Active Shield Passive shields for  -ray Cu : 5cm,Pb : 10cm for Neutron LiH LiH+Paraffin :15mm Cd sheet : 0.6mm Cu H 3 BO 3 loaded water Pb Air-tight Box UMEHARA Saori, 16 th Nov. 2011, DBD11

  6. Result of ELEGANT VI Obtained Result Energy Spectra(Jan2003-) COUNTS(/40keV) Q  of 48 Ca Run summary (Measurement for 4 years) 10 2 Date Number of Expected BG Live Time Event ( 212 Bi, 214 Bi, 208 Tl) kg ・ day 10 212 Bi (Sim) Jun1998- 0 1.30 1553 1 Jan2003- 0 0.27 3394 208 Tl (Sim) -1 10 -2 10 No events in 0  Energy Window 3000 3250 3500 3750 4000 4250 4500 4750 5000 Energy(keV) 0  Half-Life of 48 Ca : > 5.8 × 10 22 year ( 90 % C.L.) <m   < (3.5-22) eV ・ 4  active shield is effective for background free measurement. ・ Expected backgrounds are 212 Bi and 208 Tl For higher sensitivity, we need a large amount of 48 Ca.

  7. Design Concepts of CANDLES CANDLES CAlcium fluoride for studies of Neutrino and Dark matrters by Low Energy Spectrometer CaF 2 (pure) scintillator Long attenuation length (>10m@350nm) Double beta decay source 48 Ca (Q bb =4.27MeV) Liquid Scintillator (Veto Counter) Liquid scintillator 4  Active Shield Large photomultiplier tube Signals from both scintillators are detected simultaneously Active Shielding Technique CaF 2 (pure) Different time constants : ~ 1  sec Buffer Oil CaF 2 (pure) Liquid scintillator : a few 10 nsec UMEHARA Saori, 16 th Nov. 2011, DBD11 Large PMT

  8. Active Shielding Technique Setup Concept of 4  Active Shield Liquid Scintillator Acrylic Case and Performance Test :20 × 20 × 20cm 3 PSD between CaF 2 5inch PMT and Liquid Scintillators CaF 2 (pure) Distribution of “charge ratio” :10 × 10 × 10cm 3 80nsec Ratio Partial/Full 1 2  0  Partial ADC Gate Energy 2400 ~ 2600keV Liq. Scintillator 4 µ sec Full ADC Gate γ -ray 0.8 Liquid Liquid Scintillator 0.6 Scintillator Event CaF 2 (pure) Clear Discrimination 0.4 β -ray CaF 2 (pure) Event 0.2 CaF 2 (pure) 0 500 1000 1500 2000 2500 3000 3500 4000 4500 CaF 2 Energy(keV) Clear Discrimination between CaF 2 and Liquid Scintillators . . .Well Act as Veto Counter UMEHARA Saori, 16 th Nov. 2011, DBD11

  9. CANDLES III at Kamioka Lab. CANDLES at Kamioka underground Lab. CANDLES III Kamioka Lab. Map 3m diameter × 4m height (water tank) KamLAND Lab D Super Kamiokande 4m 3m CANDLES CANDLES III

  10. CANDLES III CANDLES at Kamioka underground laboratory CANDLES III CaF 2 scintillator (CaF 2 (pure)) 305 kg (96 modules × 3.2kg)  ~ 1  sec Main detector CaF 2 Scintillators (305kg) Liquid scintillator (LS) 4  Active Shield Volume:2m 3  ~ a few ten nsec Liquid Scintillator Tank(2m 3 ) Large photomultiplier tube 13inch PMT × 48 20inch PMT × 14 for CANDLES III system ・ Characteristic FADC for CaF 2 (long) 13inch and 20inch and LS(short) signals PMTs ・ Selective trigger for CaF 2

  11. FADC for CANDLES For CaF 2 and LS signals . . . And data suppression High sampling rate at the beginning, Low sampling at the ending Typical pulse shape of CaF 2 +LS Pulse Height 800 800 Pulse Height 500MHz at beginning 700 700 500MHz at beginning 600 600 ~16MHz at end 500 500 ~16MHz at end 400 400 300 300 200 200 100 100 0 0 -200 -100 0 100 200 300 400 -400 0 400 800 0 250 500 750 10001250150017502000 0 1000 2000 3000 4000 Time (nsec) Time (nsec) ~ 16MHz × 128 500MHz × 256 LS pulse CaF 2 pulse (Sum at FPGA) Clear Discrimination between CaF 2 and Liquid scintillators ・ Details of PSD will be presented in a poster session by G. Ito Data size is small. ・ 500MHz × 2048data → 500MHz × 256data + 16MHz × 128data

  12. Selective Trigger with normal trigger Ratio Partial/Full 1 Selective trigger for CaF 2 0.8 0.6 by using “threshold for integrated signal” LS CaF 2 0.4 in poster session by M. Saka 0.2 0 500 1000 1500 2000 2500 3000 3500 4000 4500 CaF 2 Energy(keV) at 2600keV Event Distribution with Trigger for CaF 2 No LS Events 1 Ratio Threshold LS Region for integrated signal 80 0.8 well works. at 2600keV 800 Pulse Height 60 0.6 700 CaF 2 + LS 600 500 CaF 2 +LS 40 400 0.4 800 Pulse Height 300 700 200 600 100 500 20 0.2 0 0 250 500 750 1000 1250 1500 1750 2000 CaF 2 400 Time(2nsec) 300 CaF 2 Event 200 0 500 10001500200025003000350040004500 0 100 0 0 0 250 500 750 1000 1250 1500 1750 2000 Energy(keV) Time(2nsec) We obtained . . . ・ High efficiency for CaF 2 Scintillator, Low efficiency for LS

  13. Position Reconstruction Position Reconstruction position(Y) 3 CaF 2 s Counts 225 for events with CaF 2 pulse shapes 200 175 for identification of CaF 2 position 150 125 100 75 position(X) 5 CaF 2 s 50 Counts 25 250 0 -500-400-300-200-100 0 100 200 300 400 500 Position Y 200 position(Z) 6 layers Counts 300 150 250 Lower Upper 200 100 150 50 100 50 0 -500-400-300-200-100 0 100 200 300 400 500 0 -500-400-300-200-100 0 100 200 300 400 500 Position X Position Z We can identify each CaF 2 position. in a poster session by K. Yasuda

  14. Pre-measurement For performance test by standard  source in a poster presentation by H. Kakubata by radioactive contaminations within a reference CaF 2 Delayed  analyses 214 Bi → 214 Po ( U-chain ) 219 Rn → 215 Po ( Ac-chain ) 220 Rn → 216 Po ( Th-chain) U-chain   214 Po 206 Pb  -  decay 238 U 214 Bi T 1/2 = 164  sec stable Q  = 3.27MeV Q  = 7.83MeV UMEHARA Saori, 16 th Nov. 2011, DBD11

  15. Delayed  analysis 214 Bi → 214 Po → 210 Pb decay ( β→α decay in U-chain ) Energy Spectra( ∆ t <300  sec) ∆ t distribution Counts 200 Counts experimental data prompt events 180 simulation 160 10 2 140 120 100 214 Bi Q  80 60 40 20 0 0 500 1000 1500 2000 2500 3000 3500 4000 0 200 400 600 800 1000 Energy(keV) Time(microsec) 200 Counts delayed events experimental data 175 Half-life : 175 ± 10 μ sec ( 164 μ sec ) fitting 150 energy resolution :  =4.3% 125 214 Po 100 radioactivity : 61 ± 9(syst.)mBq/kg 75 ( previous measurement:65mBq/kg ) 50 Expected performances 25 with current CANDLES III were obtained. 0 0 500 1000 1500 2000 2500 3000 3500 4000 Energy(keV)

  16. Expected Background Background Event in CANDLES System Radioactive Contamination within CaF 2 (pure) Background process Th-Chain   208 Pb 212 Po 232 Th 212 Bi stable 64% Q  = 8.95MeV Q  = 2.25MeV T 1/2 = 0.3  sec Pile-up event (Sequential event)  because . . . E max = 5.3MeV CaF 2 (pure) : (Q  = 4.27MeV) time constant ~1  s To reject as the sequential event (background event) ・ identify the “pile-up” shape ・  rays particle identification UMEHARA Saori, 16 th Nov. 2011, DBD11

  17. Sequential Events 212 Bi → 212 Po decay T 1/2 = 0.3  sec Pile-up Th-Chain   212 Bi 212 Po 232 Th Q  =7.8MeV Q  =2.2MeV T 1/2 = 1.1 x 10 10 year 64% Decay Constant of CaF 2 (pure) prompt delayed : 0.9  sec with small  t Typical pulse shape of sequential events Pulse Height Pulse Height Pulse Height 500 600 500 400 500 400 300 400 200 300 Delayed  100 300 Prompt β 0 200 -100 -50 0 50 100 150 200 200 Time(2nsec) 100 100 0 0 0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000 Time(2nsec) Time(2nsec) Sum-up signal of 62 PMT We can identify the sequential events. Rejection efficiency > 90%

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend