can autonomous vehicles identify recover from
play

Can Autonomous Vehicles Identify, Recover From, Rowan - PowerPoint PPT Presentation

Can Autonomous Vehicles Identify, Recover From, Rowan github.com/OATML/carsuite Yarin Sergey and Adapt to Distribution Shifts? Nick Angelos Panos ICML 2020 Tigkas Filos McAllister Rhinehart Levine Gal equal


  1. Can Autonomous Vehicles Identify, Recover From, Rowan github.com/OATML/carsuite Yarin Sergey and Adapt to Distribution Shifts? Nick Angelos Panos ICML 2020 Tigkas ∗ α Filos ∗ α McAllister β Rhinehart β Levine β Gal α ∗ equal contribution α University of Oxford β University of California, Berkeley

  2. x i y i navigate safely to goals Problem Setting Evaluation Time : in-distribution scenes out-of-distribution (OOD) scenes • inexhaustible space of scenes • failure to generalise in OOD Sensitivity to Distribution Shifts (OOD) 1 Learning from Demonstrations i N demo Training Time : • plethora of expert demonstrations • no explicit reward function Decision-making under distribution shift

  3. x i y i navigate safely to goals Problem Setting Evaluation Time : in-distribution scenes out-of-distribution (OOD) scenes • inexhaustible space of scenes • failure to generalise in OOD Sensitivity to Distribution Shifts (OOD) 1 Learning from Demonstrations i N demo Training Time : • plethora of expert demonstrations • no explicit reward function Decision-making under distribution shift

  4. Problem Setting Learning from Demonstrations • no explicit reward function • plethora of expert demonstrations Training Time : Evaluation Time : Sensitivity to Distribution Shifts (OOD) • failure to generalise in OOD • inexhaustible space of scenes out-of-distribution (OOD) scenes in-distribution scenes Decision-making under distribution shift D demo = { ( x i , y i ) } N i = 1 navigate safely to goals

  5. Problem Setting Learning from Demonstrations • no explicit reward function • plethora of expert demonstrations Training Time : Evaluation Time : Sensitivity to Distribution Shifts (OOD) • failure to generalise in OOD • inexhaustible space of scenes out-of-distribution (OOD) scenes in-distribution scenes Decision-making under distribution shift D demo = { ( x i , y i ) } N i = 1 navigate safely to goals

  6. Problem Setting Learning from Demonstrations • no explicit reward function • plethora of expert demonstrations Training Time : Evaluation Time : Sensitivity to Distribution Shifts (OOD) • failure to generalise in OOD • inexhaustible space of scenes out-of-distribution (OOD) scenes in-distribution scenes Decision-making under distribution shift D demo = { ( x i , y i ) } N i = 1 navigate safely to goals

  7. Problem Setting Learning from Demonstrations • no explicit reward function • plethora of expert demonstrations Training Time : Evaluation Time : Sensitivity to Distribution Shifts (OOD) • failure to generalise in OOD • inexhaustible space of scenes out-of-distribution (OOD) scenes in-distribution scenes Decision-making under distribution shift D demo = { ( x i , y i ) } N i = 1 navigate safely to goals

  8. Problem Setting Learning from Demonstrations • no explicit reward function • plethora of expert demonstrations Training Time : Evaluation Time : Sensitivity to Distribution Shifts (OOD) • failure to generalise in OOD • inexhaustible space of scenes out-of-distribution (OOD) scenes in-distribution scenes Decision-making under distribution shift D demo = { ( x i , y i ) } N i = 1 navigate safely to goals

  9. Problem Setting Learning from Demonstrations • no explicit reward function • plethora of expert demonstrations Training Time : Evaluation Time : Sensitivity to Distribution Shifts (OOD) • failure to generalise in OOD • inexhaustible space of scenes out-of-distribution (OOD) scenes in-distribution scenes Decision-making under distribution shift D demo = { ( x i , y i ) } N i = 1 navigate safely to goals

  10. Problem Setting Learning from Demonstrations • no explicit reward function • plethora of expert demonstrations Training Time : Evaluation Time : Sensitivity to Distribution Shifts (OOD) • failure to generalise in OOD • inexhaustible space of scenes out-of-distribution (OOD) scenes in-distribution scenes Decision-making under distribution shift D demo = { ( x i , y i ) } N i = 1 navigate safely to goals

  11. Main Result CARLA @ Roundabout nuScenes @ Boston Nicholas Rhinehart et al. (2020). “Deep Imitative Models for Flexible Inference, Planning, and Control”. International Conference on Learning Representations (ICLR) . Felipe Codevilla et al. (2018). “End-to-end driving via conditional imitation learning”. International Conference on Robotics and Automation (ICRA) . IEEE, pp. 1–9.

  12. Main Result Uncertainty-Aware Online Planning in OOD Nicholas Rhinehart et al. (2020). “Deep Imitative Models for Flexible Inference, Planning, and Control”. International Conference on Learning Representations (ICLR) . Felipe Codevilla et al. (2018). “End-to-end driving via conditional imitation learning”. International Conference on Robotics and Automation (ICRA) . IEEE, pp. 1–9.

  13. Contributions Identify novel (OOD) scenes in-distribution scenes Epistemic (Model) Uncertainty Recover From Robust Imitative Planning (RIP) Adapt To Adaptive RIP (AdaRIP) Autonomous car novel-scene benchmark CARNOVEL github.com/OATML/carsuite AbnormnalTurns BusyTown Hills Roundabouts

  14. Contributions Identify novel (OOD) scenes in-distribution scenes Epistemic (Model) Uncertainty Recover From Robust Imitative Planning (RIP) Adapt To Adaptive RIP (AdaRIP) Autonomous car novel-scene benchmark CARNOVEL github.com/OATML/carsuite AbnormnalTurns BusyTown Hills Roundabouts

  15. Contributions Identify novel (OOD) scenes in-distribution scenes Epistemic (Model) Uncertainty Recover From Robust Imitative Planning (RIP) Adapt To Adaptive RIP (AdaRIP) Autonomous car novel-scene benchmark CARNOVEL github.com/OATML/carsuite AbnormnalTurns BusyTown Hills Roundabouts

  16. Contributions Identify novel (OOD) scenes in-distribution scenes Epistemic (Model) Uncertainty Recover From Robust Imitative Planning (RIP) Adapt To Adaptive RIP (AdaRIP) Autonomous car novel-scene benchmark CARNOVEL github.com/OATML/carsuite AbnormnalTurns BusyTown Hills Roundabouts

  17. Contributions Identify novel (OOD) scenes in-distribution scenes Epistemic (Model) Uncertainty Recover From Robust Imitative Planning (RIP) Adapt To Adaptive RIP (AdaRIP) Autonomous car novel-scene benchmark CARNOVEL github.com/OATML/carsuite AbnormnalTurns BusyTown Hills Roundabouts

  18. Contributions Identify novel (OOD) scenes in-distribution scenes Epistemic (Model) Uncertainty Recover From Robust Imitative Planning (RIP) Adapt To Adaptive RIP (AdaRIP) Autonomous car novel-scene benchmark CARNOVEL github.com/OATML/carsuite AbnormnalTurns BusyTown Hills Roundabouts

  19. Recover From OOD: Robust Imitative Planning (RIP) 3 CARLA @ Roundabout 0.2 0.1 0.3 y 3 1 3 0.2 3 y 3 y 3 y 2 y 1 Robust Imitative Planning 0.6 Online Planning Under Epistemic Uncertainty 0.2 models, q k y 2 y 3 trajectories, y i q 1 q 3 0.6 OOD driving scene y 1 0.1 0.3 q 2 0.3 0.4 0.3 arg max i min k 1 . 1 0 . 7 1 . 2 K ∑ k “plan” ← “aggregate” ← “evaluate”

  20. Recover From OOD: Robust Imitative Planning (RIP) 3 CARLA @ Roundabout 0.2 0.1 0.3 y 3 1 3 0.2 3 y 3 y 3 y 2 y 1 Robust Imitative Planning 0.6 Online Planning Under Epistemic Uncertainty 0.2 models, q k y 2 y 3 trajectories, y i q 1 q 3 0.6 OOD driving scene y 1 0.1 0.3 q 2 0.3 0.4 0.3 arg max i min k 1 . 1 0 . 7 1 . 2 K ∑ k “plan” ← “aggregate” ← “evaluate”

  21. Recover From OOD: Robust Imitative Planning (RIP) 3 CARLA @ Roundabout 0.2 0.1 0.3 y 3 1 3 0.2 3 y 3 y 3 y 2 y 1 Robust Imitative Planning 0.6 Online Planning Under Epistemic Uncertainty 0.2 models, q k y 2 y 3 trajectories, y i q 1 q 3 0.6 OOD driving scene y 1 0.1 0.3 q 2 0.3 0.4 0.3 arg max i min k 1 . 1 0 . 7 1 . 2 K ∑ k “plan” ← “aggregate” ← “evaluate”

  22. Recover From OOD: Robust Imitative Planning (RIP) 3 CARLA @ Roundabout 0.2 0.1 0.3 y 3 1 3 0.2 3 y 3 y 3 y 2 y 1 Robust Imitative Planning 0.6 Online Planning Under Epistemic Uncertainty 0.2 models, q k y 2 y 3 trajectories, y i q 1 q 3 0.6 OOD driving scene y 1 0.1 0.3 q 2 0.3 0.4 0.3 arg max i min k 1 . 1 0 . 7 1 . 2 K ∑ k “plan” ← “aggregate” ← “evaluate”

  23. Recover From OOD: Robust Imitative Planning (RIP) 3 CARLA @ Roundabout 0.2 0.1 0.3 y 3 1 3 0.2 3 y 3 y 3 y 2 y 1 Robust Imitative Planning 0.6 Online Planning Under Epistemic Uncertainty 0.2 models, q k y 2 y 3 trajectories, y i q 1 q 3 0.6 OOD driving scene y 1 0.1 0.3 q 2 0.3 0.4 0.3 arg max i min k 1 . 1 0 . 7 1 . 2 K ∑ k “plan” ← “aggregate” ← “evaluate”

  24. Recover From OOD: Robust Imitative Planning (RIP) 3 CARLA @ Roundabout 0.2 0.1 0.3 y 3 1 3 0.2 3 y 3 y 3 y 2 y 1 Robust Imitative Planning 0.6 Online Planning Under Epistemic Uncertainty 0.2 models, q k y 2 y 3 trajectories, y i q 1 q 3 0.6 OOD driving scene y 1 0.1 0.3 q 2 0.3 0.4 0.3 arg max i min k 1 . 1 0 . 7 1 . 2 K ∑ k “plan” ← “aggregate” ← “evaluate”

  25. Recover From OOD: Robust Imitative Planning (RIP) 3 CARLA @ Roundabout 0.2 0.1 0.3 y 3 1 3 0.2 3 y 3 y 3 y 2 y 1 Robust Imitative Planning 0.6 Online Planning Under Epistemic Uncertainty 0.2 models, q k y 2 y 3 trajectories, y i q 1 q 3 0.6 OOD driving scene y 1 0.1 0.3 q 2 0.3 0.4 0.3 arg max i min k 1 . 1 0 . 7 1 . 2 K ∑ k “plan” ← “aggregate” ← “evaluate”

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend