c correspondence functoriality of cuntz pimsner algebras
play

C -correspondence functoriality of Cuntz-Pimsner algebras Menevs - PowerPoint PPT Presentation

C -correspondence functoriality of Cuntz-Pimsner algebras Menevs e Ery uzl u September, 2020 What/Why are we doing? Menevs e Ery uzl u C -correspondence functoriality of Cuntz-Pimsner algebras What/Why are we doing? A


  1. C ∗ -correspondence functoriality of Cuntz-Pimsner algebras Menevs ¸e Ery¨ uzl¨ u September, 2020

  2. What/Why are we doing? Menevs ¸e Ery¨ uzl¨ u C ∗ -correspondence functoriality of Cuntz-Pimsner algebras

  3. What/Why are we doing? A X A O X Menevs ¸e Ery¨ uzl¨ u C ∗ -correspondence functoriality of Cuntz-Pimsner algebras

  4. What/Why are we doing? A X A O X Cross products by automorphisms Menevs ¸e Ery¨ uzl¨ u C ∗ -correspondence functoriality of Cuntz-Pimsner algebras

  5. What/Why are we doing? A X A O X Cross products by automorphisms Cuntz algebras Menevs ¸e Ery¨ uzl¨ u C ∗ -correspondence functoriality of Cuntz-Pimsner algebras

  6. What/Why are we doing? A X A O X Cross products by automorphisms Cuntz algebras Cuntz-Krieger algebras Menevs ¸e Ery¨ uzl¨ u C ∗ -correspondence functoriality of Cuntz-Pimsner algebras

  7. What/Why are we doing? A X A O X Graph algebras of Cross products by automorphisms graphs with sinks Cuntz algebras Cuntz-Krieger algebras Menevs ¸e Ery¨ uzl¨ u C ∗ -correspondence functoriality of Cuntz-Pimsner algebras

  8. What/Why are we doing? A X A O X Graph algebras of Cross products by automorphisms graphs with sinks Cuntz algebras Crossed products by Cuntz-Krieger algebras partial automorphisms Menevs ¸e Ery¨ uzl¨ u C ∗ -correspondence functoriality of Cuntz-Pimsner algebras

  9. The Motivation A X A and B Y B are called Morita equivalent if there is an imprimitivity bimodule A M B such that A X ⊗ A M B ∼ = A M ⊗ B Y B . Menevs ¸e Ery¨ uzl¨ u C ∗ -correspondence functoriality of Cuntz-Pimsner algebras

  10. The Motivation A X A and B Y B are called Morita equivalent if there is an imprimitivity bimodule A M B such that A X ⊗ A M B ∼ = A M ⊗ B Y B . If the injective C ∗ -correspondences A X A and B Y B are Morita equivalent then the corresponding Cuntz-Pimsner algebras O X and O Y are Morita equivalent. Menevs ¸e Ery¨ uzl¨ u C ∗ -correspondence functoriality of Cuntz-Pimsner algebras

  11. Tensor Product Let A X B and B Y C be C ∗ -correspondences. The algebraic tensor product X ⊙ Y has the A − C bimodule structure: a ( x ⊗ y ) c = ax ⊗ yc for a ∈ A , x ∈ X , y ∈ Y , c ∈ C , and the unique C -valued sesquilinear form � x ⊗ y , u ⊗ v � C = � y , � x , u � B v � C for x , u ∈ X , y , v ∈ Y . The Hausdorff completion is an A − C correspondence X ⊗ B Y (with the left action a �→ ϕ X ( a ) ⊗ A 1 Y ). Menevs ¸e Ery¨ uzl¨ u C ∗ -correspondence functoriality of Cuntz-Pimsner algebras

  12. Definition 0.1 A representation of A X A on a C ∗ -algebra B is a pair consisting of a homomorphism π : A → B and a linear map t : X → B satisfying 1 t ( x ) ∗ t ( y ) = π ( � x , y � A ) , 2 π ( a ) t ( x ) = t ( ϕ ( a ) x ) , 3 t ( x ) π ( a ) = t ( xa ). Also, there is a homomorphism ψ t : K ( X ) → B with ψ t ( θ x , y ) = t ( x ) t ( y ) ∗ . X t Denote C ∗ ( π, t ) the C ∗ - K ( X ) ψ algebra generated by the B images of π and t in B . π A Menevs ¸e Ery¨ uzl¨ u C ∗ -correspondence functoriality of Cuntz-Pimsner algebras

  13. C ∗ -algebra generated by representations Consider A X A with the associated hom ϕ and a representa- tion ( π, t ). Define X ⊗ 0 = A , X ⊗ 1 = X , X ⊗ n = X ⊗ A X ⊗ n − 1 . Each X ⊗ n is a C ∗ - correspondence over A with the left action defined by , ϕ n ( a )( x 1 ⊗ A x 2 ⊗ A .... x n ) := ϕ ( a ) x 1 ⊗ A .... ⊗ A x n . Now, set t 0 = π and t 1 = t . For n = 2 , 3 , ..., define a linear map t n : X ⊗ n → C ∗ ( π, t ) by t n ( x ⊗ A y ) = t ( x ) t n − 1 ( y ) for x ∈ X and y ∈ X ⊗ n − 1 . Each ( t n , π ) is a representation of the C ∗ -correspondence X ⊗ n and we have that C ∗ ( π, t )= span { t n ( x ) t m ( y ) ∗ | x ∈ X ⊗ n , y ∈ X ⊗ m , n , m ∈ N } . Menevs ¸e Ery¨ uzl¨ u C ∗ -correspondence functoriality of Cuntz-Pimsner algebras

  14. Fock Space!!! ∞ X ⊗ n = A ⊕ X ⊕ X ⊗ 2 ⊕ X ⊗ 3 ⊕ .... F ( X ) = � n =0 n X ⊗ n : � = { x = ( x ( n )) ∈ � n � x ( n ) , x ( n ) � A converges . } For any y ∈ X , define t ∞ ( y ) ∈ L ( F ( X )) by t ∞ ( y )( a , x 1 , x 2 , .... )=(0 , ya , y ⊗ A x 1 , y ⊗ A x 2 , .... ). Define the *-homomorphism ϕ ∞ : A → L ( F ( X )) by ϕ ∞ ( a ) = diag ( a , ϕ ( a ) , ϕ 2 ( a ) , .... ) Menevs ¸e Ery¨ uzl¨ u C ∗ -correspondence functoriality of Cuntz-Pimsner algebras

  15. Here is how the adjoint of t ∞ ( y ) behaves : t ∞ ( y ) ∗ ( a ) = 0 , t ∞ ( y ) ∗ ( z ⊗ A x n ) = ϕ n ( � y , z � A )( x n ), for x n ∈ X ⊗ n . So, t ∞ ( y ) ∗ ( a , x 1 , x 2 ⊗ A x ′ 2 , x 3 ⊗ A x ′ 3 ⊗ A x ′′ 3 , .... ) = ( � y , x 1 � A , ϕ ( � y , x 2 � ( x ′ 2 ) , ϕ 2 ( � y , x 3 � ( x ′ 3 ⊗ A x ′′ 3 ) , ...... ). Now, ( t ∞ , ϕ ∞ ) is a representation of A X A on L ( F ( X )), which is called the Fock representation . Notice that the Fock space can be viewed as a full A − A correspondence with the non-degenerate homomorphism ϕ ∞ defined as above. Menevs ¸e Ery¨ uzl¨ u C ∗ -correspondence functoriality of Cuntz-Pimsner algebras

  16. Here is how the adjoint of t ∞ ( y ) behaves : t ∞ ( y ) ∗ ( a ) = 0 , t ∞ ( y ) ∗ ( z ⊗ A x n ) = ϕ n ( � y , z � A )( x n ), for x n ∈ X ⊗ n . So, t ∞ ( y ) ∗ ( a , x 1 , x 2 ⊗ A x ′ 2 , x 3 ⊗ A x ′ 3 ⊗ A x ′′ 3 , .... ) = ( � y , x 1 � A , ϕ ( � y , x 2 � ( x ′ 2 ) , ϕ 2 ( � y , x 3 � ( x ′ 3 ⊗ A x ′′ 3 ) , ...... ). Now, ( t ∞ , ϕ ∞ ) is a representation of A X A on L ( F ( X )), which is called the Fock representation . Notice that the Fock space can be viewed as a full A − A correspondence with the non-degenerate homomorphism ϕ ∞ defined as above. ∞ ( y m ) ∗ : x n ∈ X ⊗ n , y m ∈ X ⊗ m , n , m ∈ N } , C ∗ ( ϕ ∞ , t ∞ )= span { t n ∞ ( x n ) t m which is isomorphic to T X !!! Menevs ¸e Ery¨ uzl¨ u C ∗ -correspondence functoriality of Cuntz-Pimsner algebras

  17. Here is how the adjoint of t ∞ ( y ) behaves : t ∞ ( y ) ∗ ( a ) = 0 , t ∞ ( y ) ∗ ( z ⊗ A x n ) = ϕ n ( � y , z � A )( x n ), for x n ∈ X ⊗ n . So, t ∞ ( y ) ∗ ( a , x 1 , x 2 ⊗ A x ′ 2 , x 3 ⊗ A x ′ 3 ⊗ A x ′′ 3 , .... ) = ( � y , x 1 � A , ϕ ( � y , x 2 � ( x ′ 2 ) , ϕ 2 ( � y , x 3 � ( x ′ 3 ⊗ A x ′′ 3 ) , ...... ). Now, ( t ∞ , ϕ ∞ ) is a representation of A X A on L ( F ( X )), which is called the Fock representation . Notice that the Fock space can be viewed as a full A − A correspondence with the non-degenerate homomorphism ϕ ∞ defined as above. ∞ ( y m ) ∗ : x n ∈ X ⊗ n , y m ∈ X ⊗ m , n , m ∈ N } , C ∗ ( ϕ ∞ , t ∞ )= span { t n ∞ ( x n ) t m which is isomorphic to T X !!! Side Note: By using ϕ ∞ : A → T X , we get A ( T X ) T X . Menevs ¸e Ery¨ uzl¨ u C ∗ -correspondence functoriality of Cuntz-Pimsner algebras

  18. Here is how the adjoint of t ∞ ( y ) behaves : t ∞ ( y ) ∗ ( a ) = 0 , t ∞ ( y ) ∗ ( z ⊗ A x n ) = ϕ n ( � y , z � A )( x n ), for x n ∈ X ⊗ n . So, t ∞ ( y ) ∗ ( a , x 1 , x 2 ⊗ A x ′ 2 , x 3 ⊗ A x ′ 3 ⊗ A x ′′ 3 , .... ) = ( � y , x 1 � A , ϕ ( � y , x 2 � ( x ′ 2 ) , ϕ 2 ( � y , x 3 � ( x ′ 3 ⊗ A x ′′ 3 ) , ...... ). Now, ( t ∞ , ϕ ∞ ) is a representation of A X A on L ( F ( X )), which is called the Fock representation . Notice that the Fock space can be viewed as a full A − A correspondence with the non-degenerate homomorphism ϕ ∞ defined as above. ∞ ( y m ) ∗ : x n ∈ X ⊗ n , y m ∈ X ⊗ m , n , m ∈ N } , C ∗ ( ϕ ∞ , t ∞ )= span { t n ∞ ( x n ) t m which is isomorphic to T X !!! Side Note: By using ϕ ∞ : A → T X , we get A ( T X ) T X . Menevs ¸e Ery¨ uzl¨ u C ∗ -correspondence functoriality of Cuntz-Pimsner algebras

  19. Katsura Ideal Definition 0.2 For a C ∗ -correspondence X over A , define an ideal J X of A to be ϕ − 1 ( K ( X )) ∩ ( Ker ϕ ) ⊥ . Note that J X is the largest ideal on which the restriction of ϕ is an injection into K ( X ). F ( X ) J X is a Hilbert J X -module, and we have K ( F ( X ) J X ) = span { θ ζ a ,η ∈ K ( F ( X )) : ζ, η ∈ F ( X ) , a ∈ J X } , which is an ideal of L ( F ( X )). In fact, it is an ideal of T X !!! Menevs ¸e Ery¨ uzl¨ u C ∗ -correspondence functoriality of Cuntz-Pimsner algebras

  20. There comes the Cuntz-Pimsner algebra... Let ρ : L ( F ( X )) → L ( F ( X ) / K ( F ( X ) J X ) be the quotient map and set φ = ρ ◦ ϕ ∞ and t = ρ ◦ t ∞ . Then, 1 ( φ, t ) is a covariant representation of A X A on L ( F ( X ) / K ( F ( X ) J X )) 2 This representation is injective. Menevs ¸e Ery¨ uzl¨ u C ∗ -correspondence functoriality of Cuntz-Pimsner algebras

  21. There comes the Cuntz-Pimsner algebra... Let ρ : L ( F ( X )) → L ( F ( X ) / K ( F ( X ) J X ) be the quotient map and set φ = ρ ◦ ϕ ∞ and t = ρ ◦ t ∞ . Then, 1 ( φ, t ) is a covariant representation of A X A on L ( F ( X ) / K ( F ( X ) J X )) 2 This representation is injective. Katsura proves that C ∗ ( φ, t ) ∼ = O X . Hence, O X is the quotient C ∗ -algebra T X / K ( F ( X ) J X ). Menevs ¸e Ery¨ uzl¨ u C ∗ -correspondence functoriality of Cuntz-Pimsner algebras

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend