budget w o overheads
play

Budget (w/o overheads) Total Allocated Resources Hardware (EC/k) - PowerPoint PPT Presentation

T HE E UROPEAN R&D P ROGRAMME ON D IVERTOR A RMOR MATERIALS AND T ECHNOLOGY S TATUS AND S TRATEGY M. Rieth , S. Antusch, J. Hoffmann, M. Klimenkov, J. Reiser, S. Brezinsek, W. Biel, J. Coenen, J. Linke, Ch. Linsmeier, A. Litnovsky, Th.


  1. T HE E UROPEAN R&D P ROGRAMME ON D IVERTOR A RMOR MATERIALS AND T ECHNOLOGY – S TATUS AND S TRATEGY M. Rieth , S. Antusch, J. Hoffmann, M. Klimenkov, J. Reiser, S. Brezinsek, W. Biel, J. Coenen, J. Linke, Ch. Linsmeier, A. Litnovsky, Th. Loewenhoff, G. Pintsuk, B. Unterberg, M. Wirtz, H. Greuner, A. Kallenbach, R. Neu, J. Riesch, J.H. You, T. Barrett, F. Domptail, S. Dudarev, M. Fursdon, M. Gilbert, A. Galatanu, L.M. Garrison, Y. Katoh, L.L. Snead, D. Armstrong, S. Roberts

  2. Budget (w/o overheads) Total Allocated Resources Hardware (EC/k€) Total Allocated 2014 ‐ 18 2500 2000 1500 1000 500 0 1 2 3 4 5 273 lab ppy 30 ind ppy Manpower (EC/k€) Total Allocated 8.74 M€ hw 2014 ‐ 18 2700 2600 2500 2400 2300 1 2 3 4 5 today 1st IAEA Technical Meeting on Divertor Concepts | M. Rieth et al.: EUROfusion WPMAT HHFM - Status & Strategy 2 IAEA HQ | VIC | Vienna | 29.09.-2.10.2015

  3. Overall Objectives 2014-2018  Fill gaps in the database and develop design codes for the baseline materials focus of this presentation: armour  Development of new materials to mitigate requirements of advanced DEMO component designs  Demonstration of the production of such materials in processes scalable to industrial standards  Characterization of the properties of such materials  Develop models for neutron radiation effects , specifically microstructural evolution and embrittlement, in iron alloys, steels, tungsten, and degradation of functional materials  Perform neutron irradiation experiments 1st IAEA Technical Meeting on Divertor Concepts | M. Rieth et al.: EUROfusion WPMAT HHFM - Status & Strategy 3 IAEA HQ | VIC | Vienna | 29.09.-2.10.2015

  4. Overview of HHF Materials W Alloys (by PIM) W PLANSEE (rolled) W (PIM) Fracture Ductile @ 200 °C W ‐ 1TiC W ‐ 2Y 2 O 3 W ‐ 2La 2 O 3 1st IAEA Technical Meeting on Divertor Concepts | M. Rieth et al.: EUROfusion WPMAT HHFM - Status & Strategy 4 IAEA HQ | VIC | Vienna | 29.09.-2.10.2015

  5. Overview of HHF Materials Composites Cu/CuCrZr ‐ W ‐ fiber Pipes W ‐ W ‐ fiber Blocks Cu/CuCrZr ‐ W Pipes/Laminates CuCrZr W Cu W Cu WW Cu Cu CuCrZr 1st IAEA Technical Meeting on Divertor Concepts | M. Rieth et al.: EUROfusion WPMAT HHFM - Status & Strategy 5 IAEA HQ | VIC | Vienna | 29.09.-2.10.2015

  6. Overview of HHF Materials W ‐ Cu/CuCrZr Composite 1st IAEA Technical Meeting on Divertor Concepts | M. Rieth et al.: EUROfusion WPMAT HHFM - Status & Strategy 6 IAEA HQ | VIC | Vienna | 29.09.-2.10.2015

  7. Overview of HHF Materials Material Characterisation • microstructure, chemical analysis • physics: heat conductivity (diffusivity & heat capacity) • strength: tensile, bending (3 pt., 4 pt.) toughness: bending (fracture mechanics, DBTT, strain rate effect) • • HHF tests mockup (JUDITH & GLADIS) thermal shock (several FZJ facilities) 4 mm 4 mm 1st IAEA Technical Meeting on Divertor Concepts | M. Rieth et al.: EUROfusion WPMAT HHFM - Status & Strategy 7 IAEA HQ | VIC | Vienna | 29.09.-2.10.2015

  8. Divertor assessment methodology Typical Mock ‐ Up • A suitable method of divertor PFC assessment is a significant issue to be resolved – Current nuclear design codes neither consider multi-layer/multi-material structures nor stress due to manufacturing – Instead of “design by analysis”, ITER have used “design by experiments” including intensive HHF testing • Bespoke criteria based on elasto- plastic analyses are currently under development in EUROfusion Thermal analysis • The immediate need to facilitate PFC design optimisation was a standardised analysis procedure Stress using linear elastic code rules analysis 1st IAEA Technical Meeting on Divertor Concepts | M. Rieth et al.: EUROfusion WPMAT HHFM - Status & Strategy 8 IAEA HQ | VIC | Vienna | 29.09.-2.10.2015

  9. Standard thermo-mechanical analysis • “Monoblock Elastic Analysis Procedure” - “ MEAP ” • Coherent/consistent analyses across EU DIV project • Reserve factors (margin to failure) to 5 Rules are calculated, enabling ranking of design concepts • 2 structural rules, which are valid despite the considerable residual stress field, and 3 thermal rules 10 MW/m 2 surface heat flux is used for analyses • • NOT a method for “absolute” failure assessment! MEAP rule Rule details Ratchetting (3S m )  first check, runaway ratchetting is not expected in reality Rule #1 *. Requires material S m data. Fatigue – following IC3132.3.1*. Requires material cyclic  ‐  and  ‐ n data. Rule #2 For a CuCrZr pipe, maximum temperature <300°C to avoid creep/softening Rule #3 under irradiation. Minimum temperature > 150°C to limit embrittlement. Maximum wall heat flux < device Critical Heat Flux (burnout) Rule #4 Maximum tungsten armour temperature <1800°C , to limit recrystallisation Rule #5 * Reference: ITER Structural Design Criteria for In ‐ vessel Components, ITER G ‐ 74 ‐ MA ‐ 8 ‐ 01 ‐ 05 ‐ 28 ‐ W ‐ 0.2, 2012. 1st IAEA Technical Meeting on Divertor Concepts | M. Rieth et al.: EUROfusion WPMAT HHFM - Status & Strategy 9 IAEA HQ | VIC | Vienna | 29.09.-2.10.2015

  10. Outline  How to develop divertor materials without knowing the critical limits, which are closely connected to the design, which in turn is under development, too?  What are the relevant properties for divertor armour materials?  Do we perform appropriate assessment tests? 1st IAEA Technical Meeting on Divertor Concepts | M. Rieth et al.: EUROfusion WPMAT HHFM - Status & Strategy 10 IAEA HQ | VIC | Vienna | 29.09.-2.10.2015

  11. Load Analysis, Basic Properties HF 0.2 ‐ 1 GW/m 2 ELM  Thermal off ‐ normal 20 MW/m 2 normal 10 MW/m 2 #10000 #1 #2 2 fpy t 10 MW/m 2 + 0.4 GW/m 2 (1ms on, 50ms off) 15 MW/m 2 (30s), small monoblock ITER type monoblock 23 mm x 22 mm x 4 mm, D15 mm 28 mm x 28 mm x 12 mm, D17 mm 1800 Temperature (°C) M. Li, IPP water cooling, 200 °C 0 1st IAEA Technical Meeting on Divertor Concepts | M. Rieth et al.: EUROfusion WPMAT HHFM - Status & Strategy 11 IAEA HQ | VIC | Vienna | 29.09.-2.10.2015

  12. Load Analysis, Basic Properties HF  Mechanical, elastic 10 MW/m 2 normal Stress +740 MPa t 10s path +1200 Temperature (°C) Yield Limit (MPa) ‐ 670 MPa Stress (MPa) plastic deformation Sxx under compression ‐ 1200 path (mm) 1st IAEA Technical Meeting on Divertor Concepts | M. Rieth et al.: EUROfusion WPMAT HHFM - Status & Strategy 12 IAEA HQ | VIC | Vienna | 29.09.-2.10.2015

  13. Load Analysis, Basic Properties HF  Mechanical, plastic 10 MW/m 2 normal 10s 20s t Plastic Deformation (10 s) Secondary Stresses (20 s) Pl. Strain Stress 3.1E ‐ 3 365 MPa 2.1E ‐ 3 200 MPa 1.1E ‐ 3 0 0 ‐ 110 MPa 1st IAEA Technical Meeting on Divertor Concepts | M. Rieth et al.: EUROfusion WPMAT HHFM - Status & Strategy 13 IAEA HQ | VIC | Vienna | 29.09.-2.10.2015

  14. Load Analysis, Basic Properties HF  Mechanical, plastic 10 MW/m 2 normal Max. Stress during cooling 10s 20s t  Mechanical, dynamic • Strain rate: 10 ‐ 3 /s – 10 ‐ 2 /s • 150 °C < DBTT <250 °C • T > 300 °C  ductile regime  no brittle fratcure 1st IAEA Technical Meeting on Divertor Concepts | M. Rieth et al.: EUROfusion WPMAT HHFM - Status & Strategy 14 IAEA HQ | VIC | Vienna | 29.09.-2.10.2015

  15. Load Analysis, Basic Properties  Thermal: T surf = 1790 ‐ 2112 °C HF off ‐ normal  Recrystallisation (Rxx) 20 MW/m 2  Mechanical o plastic surface deformation > 1% 10s 20s t during heating Stress 710 MPa o secondary surface tensile stresses after cooling down: > 710 MPa 0  Dynamical: DBTT 250 ‐ 350 °C (W ‐ Rxx) ‐ 500 MPa  ductile ‐ brittle regime ‐ 973 MPa  Fracture Mechanics o K Ic = 5 ‐ 8 MPa m 1/2 (W ‐ Rxx) o critical crack length = 16 ‐ 40 µm o grain size: min. 50 µm, max. >300 µm  ductile/brittle crack formation likely 1st IAEA Technical Meeting on Divertor Concepts | M. Rieth et al.: EUROfusion WPMAT HHFM - Status & Strategy 15 IAEA HQ | VIC | Vienna | 29.09.-2.10.2015

  16. Load Analysis, Basic Properties  Thermal HF 0.2 GW/m 2 1500 10 MW/m 2 normal Temperature (°C) time 1ms 50ms t  Mechanical 350 strain rates > 1/s 300 path (mm) ‐ 200 1st IAEA Technical Meeting on Divertor Concepts | M. Rieth et al.: EUROfusion WPMAT HHFM - Status & Strategy 16 IAEA HQ | VIC | Vienna | 29.09.-2.10.2015

  17. Load Analysis, Basic Properties HF 0.2 ‐ 1.0 GW/m 2  Mechanical  Surface Area normal 10 MW/m 2 1ms 50ms t 210 MW/m 2 , 1 ms 10 MW/m 2 , 51 ms Stress Stress 785 MPa 760 MPa 0 0 ‐ 385 MPa ‐ 350 MPa  only a thin layer (500 µm) is loaded with high strain rates (> 1/s) at 1000 ‐ 1400 °C  plastic surface deformation under tensile and compression without immediate damage  Tmax: 0.2 GW/m 2 – 1400°C, 0.4 GW/m 2 – 1750°C, 0.6 GW/m 2 – 2100°C, 0.8 GW/m 2 – 2500°C, 1 GW/m 2 – 2900°C (1 mm surface layer with 1 ‐ 5% deformation)  Recrystallisation 1st IAEA Technical Meeting on Divertor Concepts | M. Rieth et al.: EUROfusion WPMAT HHFM - Status & Strategy 17 IAEA HQ | VIC | Vienna | 29.09.-2.10.2015

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend