bridges between abstract argumentation and belief revision
play

Bridges between Abstract Argumentation and Belief Revision Sylvie - PowerPoint PPT Presentation

Bridges between Abstract Argumentation and Belief Revision Sylvie Coste-Marquis S ebastien Konieczny Jean-Guy Mailly Pierre Marquis Centre de Recherche en Informatique de Lens Universit e dArtois CNRS UMR 8188 2 nd Madeira


  1. Bridges between Abstract Argumentation and Belief Revision Sylvie Coste-Marquis S´ ebastien Konieczny Jean-Guy Mailly Pierre Marquis Centre de Recherche en Informatique de Lens Universit´ e d’Artois – CNRS UMR 8188 2 nd Madeira Workshop on Belief Revision and Argumentation February 9 th – February 13 th 1/18 AMANDE

  2. Outline Introduction Abstract Argumentation Belief Revision Overview of our Contributions Adapting AGM to Abstract Argumentation Using AGM to Revise Abstract AF Translation-based Revision of Argumentation Frameworks Encoding AF and their Semantics Distance-based Operators and Minimal Change Conclusion and Future Work 2/18 AMANDE

  3. Outline Introduction Abstract Argumentation Belief Revision Overview of our Contributions Adapting AGM to Abstract Argumentation Using AGM to Revise Abstract AF Translation-based Revision of Argumentation Frameworks Encoding AF and their Semantics Distance-based Operators and Minimal Change Conclusion and Future Work 2/18 AMANDE

  4. Abstract Argumentation [Dung 1995] ◮ An abstract argumentation framework is a pair �A , R� with R ⊆ A × A : a c b ◮ An extension is a set of arguments that can be accepted together ◮ Different semantics to define the extensions: complete, stable, preferred, grounded, etc. ◮ The aim is to know whether an argument is accepted or not w.r.t. the chosen semantics σ ◮ An argument a ∈ A is (skeptically) accepted iff it belongs to every extension of the AF w.r.t. the considered semantics σ : � F | ∼ σ a ⇔ a ∈ Ext σ ( F ) 3/18 AMANDE

  5. AGM Framework for Belief Revision ◮ AGM Framework [Alchourr´ on, G¨ ardenfors and Makinson 1985] ◮ Adaptation for propositional logic [Katsuno and Mendelzon 1991] ◮ Incorporate a new piece of information α in the agent’s beliefs ϕ wrt some notion of plausibility p : Mods ( ϕ ◦ α ) = min( Mods ( α ) , ≤ p ) 4/18 AMANDE

  6. AF Revision ◮ Aim: Incorporation of a new piece of information about the attack relation and/or the acceptance statuses of arguments ◮ Two kind of minimal change: Attack � = Acceptance 5/18 AMANDE

  7. Outline Introduction Abstract Argumentation Belief Revision Overview of our Contributions Adapting AGM to Abstract Argumentation Using AGM to Revise Abstract AF Translation-based Revision of Argumentation Frameworks Encoding AF and their Semantics Distance-based Operators and Minimal Change Conclusion and Future Work 5/18 AMANDE

  8. Adapting AGM to Abstract Argumentation ◮ A Two-step Process ϕ AF revised extensions AFs 6/18 AMANDE

  9. Summary of this Contribution ◮ New piece of information: formula about acceptance statuses ex: ϕ = ( a 1 ∨ a 2 ) ∧ ¬ a 3 ◮ First minimality criterion: minimal change of arguments statuses ◮ Other (less important) minimality criterion: minimal change of the attack relation, minimality of the output’s size ◮ More details: Coste-Marquis, Konieczny, Mailly, Marquis, On the Revision of Argumentation Systems: Minimal Change of Arguments Statuses , KR 2014 7/18 AMANDE

  10. Using AGM to Revise Abstract AF ◮ σ : a semantics to define acceptable arguments ◮ F : an argumentation framework ◮ ϕ : a propositional formula indicating how to revise F F , ϕ 8/18 AMANDE

  11. Using AGM to Revise Abstract AF ◮ σ : a semantics to define acceptable arguments ◮ F : an argumentation framework ◮ ϕ : a propositional formula indicating how to revise F F , ϕ F ⋆ ϕ 8/18 AMANDE

  12. Using AGM to Revise Abstract AF ◮ σ : a semantics to define acceptable arguments ◮ F : an argumentation framework ◮ ϕ : a propositional formula indicating how to revise F F , ϕ F ⋆ ϕ σ -encoding F encoded 8/18 AMANDE

  13. Using AGM to Revise Abstract AF ◮ σ : a semantics to define acceptable arguments ◮ F : an argumentation framework ◮ ϕ : a propositional formula indicating how to revise F F , ϕ F ⋆ ϕ σ -encoding F encoded Revision of F encoded ◦ 8/18 AMANDE

  14. Using AGM to Revise Abstract AF ◮ σ : a semantics to define acceptable arguments ◮ F : an argumentation framework ◮ ϕ : a propositional formula indicating how to revise F F , ϕ F ⋆ ϕ σ -encoding F encoded Revision of F encoded ◦ AGM Revision 8/18 AMANDE

  15. Using AGM to Revise Abstract AF ◮ σ : a semantics to define acceptable arguments ◮ F : an argumentation framework ◮ ϕ : a propositional formula indicating how to revise F F , ϕ F ⋆ ϕ σ -encoding σ -decoding F encoded Revision of F encoded ◦ AGM Revision 8/18 AMANDE

  16. Using AGM to Revise Abstract AF ◮ σ : a semantics to define acceptable arguments ◮ F : an argumentation framework ◮ ϕ : a propositional formula indicating how to revise F ⋆ F , ϕ F ⋆ ϕ σ -encoding σ -decoding F encoded Revision of F encoded ◦ AGM Revision 8/18 AMANDE

  17. Using AGM to Revise Abstract AF ◮ σ : a semantics to define acceptable arguments ◮ F : an argumentation framework ◮ ϕ : a propositional formula indicating how to revise F AF Revision ⋆ F , ϕ F ⋆ ϕ σ -encoding σ -decoding F encoded Revision of F encoded ◦ AGM Revision 8/18 AMANDE

  18. Outline Introduction Abstract Argumentation Belief Revision Overview of our Contributions Adapting AGM to Abstract Argumentation Using AGM to Revise Abstract AF Translation-based Revision of Argumentation Frameworks Encoding AF and their Semantics Distance-based Operators and Minimal Change Conclusion and Future Work 8/18 AMANDE

  19. Propositional Language ◮ ∀ x ∈ A , acc ( x ) = “ x is skeptically accepted by F ” ◮ ∀ x , y ∈ A , att ( x , y ) = “ x attacks y in F ” ◮ Prop A = { acc ( x ) | x ∈ A } ∪ { att ( x , y ) | x , y ∈ A } ◮ L A is the propositional language built on the set of variables Prop A and the connectives ¬ , ∨ , ∧ 9/18 AMANDE

  20. Encoding an AF σ -formula of F Given an AF F = � A , R � and a semantics σ , the σ -formula of F is � � f σ ( F ) = att ( x , y ) ∧ ¬ att ( x , y ) ( x , y ) ∈ R ( x , y ) �∈ R 10/18 AMANDE

  21. Encoding an AF σ -formula of F Given an AF F = � A , R � and a semantics σ , the σ -formula of F is � � f σ ( F ) = att ( x , y ) ∧ ¬ att ( x , y ) ∧ th σ ( A ) ( x , y ) ∈ R ( x , y ) �∈ R where the σ -theory of A th σ ( A ) is a formula which encodes the semantics σ . 10/18 AMANDE

  22. Encoding the Stable Semantics (1) Stable extensions of an AF F = � A , R � [Besnard and Doutre 2004] � � ( a ⇔ ¬ b ) a ∈ A b :( b , a ) ∈ R Example F 1 = a c a ∧ [ b ⇔ ( ¬ a ∧ ¬ c )] b d ∧ [ c ⇔ ¬ b ] ∧ [ d ⇔ ¬ c ] One single model / stable extension: { a , c } 11/18 AMANDE

  23. Encoding the Stable Semantics (1) Stable extensions of an AF F = � A , R � [Besnard and Doutre 2004] � � ( a ⇔ ¬ b ) a ∈ A b :( b , a ) ∈ R Example F 1 = a c a ∧ [ b ⇔ ( ¬ a ∧ ¬ c )] b d ∧ [ c ⇔ ¬ b ] ∧ [ d ⇔ ¬ c ] One single model / stable extension: { a , c } 11/18 AMANDE

  24. Encoding the Stable Semantics (2) From � � ( a ⇔ ¬ b ) a ∈ A b :( b , a ) ∈ R to . . . Stable theory of the set A th st ( A ) = � a i ∈ A ( acc ( a i ) ⇔ ∀ a 1 , . . . , a n , ( � a ∈ A ( a ⇔ � b ∈ A ( att ( b , a ) ⇒ ¬ b )) ⇒ a i )) 12/18 AMANDE

  25. Encoding the Stable Semantics (2) From � � ( a ⇔ ¬ b ) a ∈ A b :( b , a ) ∈ R to . . . Stable theory of the set A th st ( A ) = � a i ∈ A ( acc ( a i ) ⇔ ∀ a 1 , . . . , a n , ( � a ∈ A ( a ⇔ � b ∈ A ( att ( b , a ) ⇒ ¬ b )) ⇒ a i )) 12/18 AMANDE

  26. Encoding the Stable Semantics (2) From � � ( a ⇔ ¬ b ) a ∈ A b :( b , a ) ∈ R to . . . Stable theory of the set A th st ( A ) = � a i ∈ A ( acc ( a i ) ⇔ ∀ a 1 , . . . , a n , ( � a ∈ A ( a ⇔ � b ∈ A ( att ( b , a ) ⇒ ¬ b )) ⇒ a i )) 12/18 AMANDE

  27. Decoding Tools ◮ Proj att (Φ): projection of the models of Φ on the variables att ( x , y ) ◮ arg ( Mods att ): generation of AFs from models projected on att ( x , y ) Example of decoding With A = { a , b } , the revised models could be: Mod (Φ) = {{ acc ( a ) , ¬ acc ( b ) , ¬ att ( a , a ) , att ( a , b ) , ¬ att ( b , a ) , ¬ att ( b , b ) }} . So, Proj att (Φ) = {{¬ att ( a , a ) , att ( a , b ) , ¬ att ( b , a ) , ¬ att ( b , b ) }} and arg ( Proj att (Φ)) = { F } with F the AF below: a b 13/18 AMANDE

  28. Decoding Tools ◮ Proj att (Φ): projection of the models of Φ on the variables att ( x , y ) ◮ arg ( Mods att ): generation of AFs from models projected on att ( x , y ) Example of decoding With A = { a , b } , the revised models could be: Mod (Φ) = {{ acc ( a ) , ¬ acc ( b ) , ¬ att ( a , a ) , att ( a , b ) , ¬ att ( b , a ) , ¬ att ( b , b ) }} . So, Proj att (Φ) = {{¬ att ( a , a ) , att ( a , b ) , ¬ att ( b , a ) , ¬ att ( b , b ) }} and arg ( Proj att (Φ)) = { F } with F the AF below: a b 13/18 AMANDE

  29. Decoding Tools ◮ Proj att (Φ): projection of the models of Φ on the variables att ( x , y ) ◮ arg ( Mods att ): generation of AFs from models projected on att ( x , y ) Example of decoding With A = { a , b } , the revised models could be: Mod (Φ) = {{ acc ( a ) , ¬ acc ( b ) , ¬ att ( a , a ) , att ( a , b ) , ¬ att ( b , a ) , ¬ att ( b , b ) }} . So, Proj att (Φ) = {{¬ att ( a , a ) , att ( a , b ) , ¬ att ( b , a ) , ¬ att ( b , b ) }} and arg ( Proj att (Φ)) = { F } with F the AF below: a b 13/18 AMANDE

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend