branch flow model
play

Branch Flow Model relaxations, convexification Masoud Farivar - PowerPoint PPT Presentation

Branch Flow Model relaxations, convexification Masoud Farivar Steven Low Computing + Math Sciences Electrical Engineering Caltech May 2012 Motivations Global trends 1 Proliferation renewables ! Driven by sustainability ! Enabled by


  1. Branch Flow Model relaxations, convexification Masoud Farivar Steven Low Computing + Math Sciences Electrical Engineering Caltech May 2012

  2. Motivations

  3. Global trends 1 Proliferation renewables ! Driven by sustainability ! Enabled by policy and investment

  4. Sustainability challenge Electricity generation 1971-2007 2007: 19,800 TWh 1973: 6,100 TWh In 2009, 1.5B people US CO 2 emission have no electricity Elect generation: 40% Sources: International Energy Agency, 2009 Transportation: 20% DoE, Smart Grid Intro, 2008

  5. Worldwide energy demand: 16 TW Wind power over land (exc. Antartica) electricity demand: 70 – 170 TW 2.2 TW wind capacity (2009) : 159 GW grid-tied PV capacity (2009) : 21 GW Source: Renewable Energy Global Status Report, 2010 Solar power over land Source: M. Jacobson, 2011 340 TW

  6. Uncertainty High Levels of Wind and Solar PV Will Present an Operating Challenge! Source: Rosa Yang, EPRI

  7. Global trends 1 Proliferation of renewables ! Driven by sustainability ! Enabled by policy and investment 2 Migration to distributed arch ! 2-3x generation efficiency ! Relief demand on grid capacity

  8. Large active network of DER DER: PVs, wind turbines, batteries, EVs, DR loads

  9. Large active network of DER Millions of active endpoints introducing rapid large � random fluctuations � in supply and demand � DER: PVs, wind turbines, EVs, batteries, DR loads

  10. Implications Current control paradigm works well today ! Low uncertainty, few active assets to control ! Centralized, open-loop, human-in-loop, worst-case preventive ! Schedule supplies to match loads Future needs ! Fast computation to cope with rapid, random, large fluctuations in supply, demand, voltage, freq ! Simple algorithms to scale to large networks of active DER ! Real-time data for adaptive control, e.g. real-time DR

  11. Key challenges Nonconvexity ! Convex relaxations Large scale ! Distributed algorithms Uncertainty ! Risk-limiting approach

  12. Optimal power flow (OPF) OPF is solved routinely to determine ! How much power to generate where ! Market operation & pricing ! Parameter setting, e.g. taps, VARs Non-convex and hard to solve ! Huge literature since 1962 ! Common practice: DC power flow (LP)

  13. Optimal power flow (OPF) Problem formulation Carpentier 1962 ! Computational techniques Dommel & Tinney 1968 ! Surveys: Huneault et al 1991, Momoh et al 2001, ! Pandya et al 2008 Bus injection model: SDP relaxation Bai et al 2008, 2009, Lavaei et al 2010, 2012 ! Bose et al 2011, Zhang et al 2011, Sojoudi et al 2012 ! Lesieutre et al 2011 ! Branch flow model: SOCP relaxation Baran & Wu 1989, Chiang & Baran 1990, Taylor 2011, ! Farivar et al 2011

  14. Application: Volt/VAR control Motivation ! Static capacitor control cannot cope with rapid random fluctuations of PVs on distr circuits Inverter control ! Much faster & more frequent ! IEEE 1547 does not optimize VAR currently (unity PF)

  15. !"#$%#&$%'"(#)%*#)+#,"&% c p i g p i -./+)+0#(%$+12)+34,"&%% "5%6("#$7%1"(#)8%5")%9#(#3#1:%

  16. '4..#);% • <")=%)=(+#3(=%"/=)#,"&% • -&=)>;%1#?+&>1%

  17. Outline Branch flow model and OPF Solution strategy: two relaxations ! Angle relaxation ! SOCP relaxation Convexification for mesh networks Extension

  18. Two models g c s j s j k j i S jk 3)#&0:% S ij @"A% ! ! S j = S jk k 341%% +&B=0,"&%

  19. Two models j i k z ij V i V j I ij branch ! ! current I j = I jk k bus current

  20. Two models S i = V i ! ! * I i V i V j * S ij = V i I ij Equivalent models of Kirchhoff laws ! Bus injection model focuses on nodal vars ! Branch flow model focuses on branch vars

  21. Two models S i = V i ! ! * I i V i V j * S ij = V i I ij 1. What is the model? 2. What is OPF in the model? 3. What is the solution strategy?

  22. let’s start with something familiar

  23. Bus injection model ! S j = V j ! * for all j I j power definition ! I = YV Kirchhoff law ! S j = ! s j for all j power balance admittance matrix: S j = V j ! ! * I j # ! y ik if i = j c ! s j g s j = s j % k ~ i % Y ij : = " y ij if i ~ j $ % 0 else % &

  24. Bus injection model ! S j = V j ! * for all j I j power definition ! I = YV Kirchhoff law ! S j = ! s j for all j power balance x : = ! S , ! ) , s : = s c ! s g ( variables ! I , V , s

  25. Bus injection model: OPF f j Re ! ( ) ( ) ! min S j e.g. generation cost j x : = ! S , ! over ! ( ) I , V , s subject to ! I = YV Kirchhoff law ! S j = " s j ! S j = V j ! power balance * I j s j # s j # s j V k # | V k | # V k

  26. Bus injection model: OPF In terms of V : " * * min tr M k VV P k = tr ! k VV k ! G * Q k = tr " k VV over V g # P g # P d $ tr % k VV * $ P k d s.t. P k * + Y k k k # & ! k := Y k g # Q k g # Q k d $ tr & k VV % ( * $ Q k d Q k 2 $ ' * ) Y k 2 2 $ tr J k VV # & * $ V k V k " k := Y k % ( 2 i $ ' Key observation [Bai et al 2008] : OPF = rank constrained SDP

  27. Bus injection model: OPF " min tr M k W k ! G over W positive semidefinite matrix s.t. P k # tr $ k W # P k Q k # tr % k W # Q k 2 2 # tr J k W # V k V k W & 0, rank W = 1 convex relaxation: SDP

  28. Bus injection model: SDR Non-convex QCQP Rank-constrained SDP Relax the rank constraint and solve the SDP Bai 2008 Does the optimal solution satisfy the rank-constraint? yes no We are done! Solution may not be meaningful Lavaei 2010, 2012 Radial: Bose 2011, Zhang 2011 Lesiertre 2011 Sojoudi 2011

  29. Bus injection model: summary OPF = rank constrained SDP Sufficient conditions for SDR to be exact ! Mesh: must solve SDR to check ! Tree: depends only on constraint pattern

  30. Two models S i = V i ! ! * I i V i V j * S ij = V i I ij 1. What is the model? 2. What is OPF in the model? 3. What is the solution strategy?

  31. Branch flow model * for all i ! j S ij = V i I ij power def V i ! V j = z ij I ij for all i " j Ohm’s law ( ) 2 # # S ij ! z ij I ij S jk = s j for all j power balance ! i " j j " k sending sending end pwr loss end pwr s j

  32. Branch flow model * for all i ! j S ij = V i I ij power def V i ! V j = z ij I ij for all i " j Ohm’s law ( ) 2 # # S ij ! z ij I ij S jk = s j for all j power balance ! i " j j " k ) , s : = s c ! s g ( variables x : = S , I , V , s branch flows

  33. Branch flow model * for all i ! j S ij = V i I ij power def V i ! V j = z ij I ij for all i " j Ohm’s law ( ) 2 # # S ij ! z ij I ij S jk = s j for all j power balance ! i " j j " k ) , s : = s c ! s g ( variables x : = S , I , V , s y : = h ( x ): = S , ! , v , s projection ˆ ( )

  34. Branch flow model: OPF 2 + 2 ! ! min r I ij V i ! i ij i ~ j i over ( S , I , V , s g , s c ) 9*H%60"&1=)?#,"&% )=#(%/"A=)%("11% g " s i g " s i g s i " s i c s. t. s i ?"(2#>=%)=$40,"&8%% v i " v i " v i 2 + s j c " s j C+)0:"DE1%!#AF% ! g S ij = S jk + z ij I ij k : j ~ k G:.E1%!#AF% * S ij = V i I ij V j = V i ! z ij I ij

  35. Branch flow model: OPF ( ) min f h ( x ) over x : = ( S , I , V , s g , s c ) g ! s i g ! s i g s i ! s i c s. t. s i 2 ! v i $=.#&$% v i ! V i )=1/"&1=% ( ) c ! s j 2 # # g S ij ! z ij I ij S jk = s j ! 3)#&0:%@"A% i " j j " k ."$=(% * S ij = V i I ij V j = V i ! z ij I ij

  36. Branch flow model: OPF ( ) min f h ( x ) over x : = ( S , I , V , s g , s c ) g ! s i g ! s i g s i ! s i c s. t. s i 2 ! v i >=&=)#,"&7% v i ! V i *IH%0"&2)"(% ( ) c ! s j 2 # # g S ij ! z ij I ij S jk = s j ! 3)#&0:%@"A% i " j j " k ."$=(% * S ij = V i I ij V j = V i ! z ij I ij

  37. Outline Branch flow model and OPF Solution strategy: two relaxations ! Angle relaxation ! SOCP relaxation Convexification for mesh networks Extension

  38. Solution strategy OPF nonconvex inverse angle projection relaxation for tree OPF-ar nonconvex conic exact relaxation relaxation OPF-cr convex

  39. Angle relaxation ( ) c ! s j 2 # # g S ij ! z ij I ij S jk = s j ! 3)#&0:%@"A% i " j j " k ."$=(% * S ij = V i I ij V j = V i ! z ij I ij

  40. Angle relaxation ( ) c ! s j 2 # # g S ij ! z ij I ij S jk = s j ! 3)#&0:%@"A% i " j j " k ."$=(% * S ij = V i I ij V j = V i ! z ij I ij eliminate angles 2 I ij 2 + 2 Re z ij 2 = V j 2 ( ) ! z ij * S ij V i /"+&21%)=(#J=$%% 2"%0+)0(=1%K% 2 2 = S ij I ij 2 V i

  41. Angle relaxation ( ) c ! s j 2 # # g S ij ! z ij I ij S jk = s j ! ( ) S , I , V , s i " j j " k * S ij = V i I ij V j = V i ! z ij I ij 2 I ij 2 + 2 Re z ij 2 = V j 2 ( ) ! z ij * S ij V i 2 2 = S ij I ij 2 V i

  42. Angle relaxation ( ) c ! s j 2 # # g S ij ! z ij I ij S jk = s j ! ( ) S , I , V , s i " j j " k * S ij = V i I ij V j = V i ! z ij I ij 2 I ij 2 + 2 Re z ij 2 = V j 2 ( ) ! z ij * S ij V i 2 2 = S ij 2 ! ij : = I ij S , ! , v , s I ij ( ) 2 V i 2 v i : = V i

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend