bps state counting
play

BPS-State Counting: Quiver Invariant, Abelianisation & Mutation - PowerPoint PPT Presentation

BPS-State Counting: Quiver Invariant, Abelianisation & Mutation S.-J.L. , Z.-L.Wang, and P.Yi ; 1205.6511 , 1207.0821 , 1310.1265 H.Kim, S.-J.L. , and P.Yi ; 1504.00068 Seung-Joo Lee Virginia Tech Southeastern regional mathematical string


  1. BPS-State Counting: Quiver Invariant, Abelianisation & Mutation S.-J.L. , Z.-L.Wang, and P.Yi ; 1205.6511 , 1207.0821 , 1310.1265 H.Kim, S.-J.L. , and P.Yi ; 1504.00068 Seung-Joo Lee Virginia Tech Southeastern regional mathematical string theory meeting Apr 11, 2015 Monday, April 13, 15

  2. Outlin e Warm-Up - A topology Exercise Rudiments - index and Wall-Crossing - BPS Quivers Quiver Invariants - Characterisation of the Higgs Moduli Spaces Non-Abelian Quivers - Abelianisation - Mutation Monday, April 13, 15

  3. Warm Up a topology exercise Monday, April 13, 15

  4. • a 3 a 2 a 1 • a 3 a 2 • a 3 a 2 a 3 a 2 a 1 a 1 a 1 Chamber 1 Chamber 2 Chamber 3 P a 2 − 1 × P a 3 − 1 P a 3 − 1 × P a 1 − 1 P a 1 − 1 × P a 2 − 1 O (1 , 1) ⊕ a 1 O (1 , 1) ⊕ a 2 O (1 , 1) ⊕ a 3 Monday, April 13, 15

  5. • a 3 = a 2 = • 4 5 a 1 = 6 • 4 5 • 4 5 4 5 6 6 6 Chamber 1 Chamber 2 Chamber 3 P 4 × P 3 P 3 × P 5 P 5 × P 4 O (1 , 1) ⊕ 4 O (1 , 1) ⊕ 6 O (1 , 1) ⊕ 5 Monday, April 13, 15

  6. • 4 5 • 4 5 4 5 6 6 6 Chamber 1 Chamber 2 Chamber 3 • 1 · y -5 0 · y -4 • 1 · y -3 2 · y -3 0 · y -2 0 · y -2 2 · y -1 3 · y -1 1 · y -1 52 · y 0 52 · y 0 52 · y 0 1 · y 1 3 · y 1 2 · y 1 0 · y 2 0 · y 2 2 · y 3 1 · y 3 0 · y 4 1 · y 5 Monday, April 13, 15

  7. Cahmber 1 Chamber 2 Chamber 3 H . , . H . , . H . , . • 1 0 0 • 1 0 2 0 0 0 0 0 0 0 0 2 0 1 0 0 3 0 0 0 26 26 0 26 26 0 0 26 26 0 0 0 2 0 1 0 0 3 0 0 0 0 0 0 0 0 1 0 2 0 0 0 1 Monday, April 13, 15

  8. Rudiments BPS Index Monday, April 13, 15

  9. N =2 Basics • We consider N =2 Abelian gauge theories. • States have integer charges: γ ∈ Z 2 r ≡ Γ • Poincare extends to N =2 super-Poincare: M gets bounded by |Z|. • M=|Z| case: “short” repre, S j =[ j ] r hh , ⊗ where r hh =2[0] [1/2] is the 4-dim l irrep of the odd alg. ⊕ • M>|Z| case: “long” repre, L j =[ j ] r hh r hh ⊗ ⊗ Monday, April 13, 15

  10. BPS Index � � � � • For the Hilbert space , � � � � ⊕ n j ( γ ) ⊕ m l ( γ ) H 1 � ⊕ S j L l γ = � j ∈ 1 l ∈ 1 2 Z ≥ 0 2 Z ≥ 0 define the BPS index as: � ( − 1) 2 j (2 j + 1) n j ( γ ) Ω ( γ ) := j ∈ 1 2 Z ≥ 0 γ ( − 1) 2 J 3 = Tr � H 1 • Only genuine short reps contribute to . Ω ( γ ) • The little super-algebra contains su (2) R and hence one can define the refined index as: y =1 γ ( − 1) 2 J 3 y 2 I 3 +2 J 3 Ω ( γ ; y ) = Tr � γ ( − 1) 2 J 3 Ω ( γ ) = Tr � − − → H 1 H 1 Monday, April 13, 15

  11. Rudiments Wall-crossing Monday, April 13, 15

  12. Wall-Crossing • is invariant under arbitrary deformations of , H 1 Ω ( γ ) γ but may change under deformations of the theory. • The index is ill-defined when mixes with the multi-ptl H 1 γ spectrum, i.e., if can split into and s.t. γ 1 γ γ 2 , . Z 1 /Z 2 ∈ R + γ 1 + γ 2 = γ • Thus, in the parameter space, there appears a wall, across which the BPS index jumps. Monday, April 13, 15

  13. Wall-Crossing • Generic BPS one-particle states as loose bound states of charge centers, balanced by classical forces. [Lee, Yi `98; Bak, Lee, Lee, Yi `99; Gauntlett, Kim, Park, Yi `99; Stern, Yi `00; Gauntlett, Kim, Lee, Yi `00] • The equilibrium distances become infinite as one approaches the wall [Denef `02] : R = � γ 1 , γ 2 � | Z 1 + Z 2 | Im[ ¯ 2 Z 1 Z 2 ] Monday, April 13, 15

  14. Rudiments BPS Quivers Monday, April 13, 15

  15. BPS Quivers • BPS states ~ D-branes wrapping various cycles. • Low-energy D-brane dynamics by a D =4, N =1 quiver gauge theory reduced to the eff. particle world-line. • E.g. IIB on CY 3 : one-particle BPS states seen as a D3-brane wrapping a SLag. • Two pictures arise for the same BPS bound state of branes: (1) Set of particles at equilibrium (2) Fusion of D-branes related via quiver quantum mechanics [Denef `02] Monday, April 13, 15

  16. BPS Quivers • U(1) vectors include x v =(x v1 , x v2 ,x v3 ) and bi-fund. chirals include Z vwk=1,...,a vw , where a vw = � γ v , γ w � • x 2 • Two phases (1) Coulomb: x v , Z vwk γ 2 (2) Higgs: x v , Z vwk • Z 23 k=1,...,a 23 Z 12 k=1,...,a 12 x 3 x 1 γ 3 γ 1 Monday, April 13, 15

  17. BPS Index • For large x v - x w , chirals are massive and eff. dynamics leads to � γ w , γ v � , with � θ v = 2 Im[ e − i α Z γ v ( u )] K v � | x w � x v | � θ v ( u ) = 0 for � v w � = v • By studying the sol n space , one M = { x v | K v = 0 , ∀ v } \ R 3 can obtain the Coulomb index Ω Coulomb ( { γ v } ; y ) [de Boer, El-Showk, Messamah, van Den Bleeken `09], [Manschot, Pioline, Sen `11] • Dialing the coupling to 0, one can describe the system as QM on the variety . � M H = { Z k vw | D v = θ v , ∀ v } / U (1) • The Higgs index is given as: v ( − 1) p + q − d y 2 p − d h p,q ( M H ) � Ω Higgs ( { γ v } ; y )= p,q Monday, April 13, 15

  18. Coulomb vs Higgs • It has been shown [Denef `02; Sen `11] : Ω Coulomb = Ω Higgs • Multi-center picture has a smooth transition into the fused D-brane picture at a single point. • The two pictures might become very different if the quivers have a loop [Denef, Moore `07] : Ω Coulomb << Ω Higgs Monday, April 13, 15

  19. Quiver Invariants Monday, April 13, 15

  20. Intrinsic Higgs States • The Higgs phase might in general have more states than the Coulomb phase multi-center states. • We may call these additional ones “intrinsic” Higgs states. • Thus, the Higgs index can be written as: Ω Higgs = Ω Coulomb + “ Ω Inv ” Ω Inv • The intrinsic Higgs states are expected not to experience wall-crossing. Monday, April 13, 15

  21. Cyclic Example • Consider a 3-node quiver with superpotential � C k 1 k 2 k 3 Z k 1 12 Z k 2 23 Z k 3 W ( { Z k 12 } , { Z k 23 } , { Z k 31 } ) = 31 • There arise 3 different quiver varieties, in each of which one set of chirals vanishes. γ 2 • The moduli space is embedded • Z 23 k=1,...,a 23 Z 12 k=1,...,a 12 by F-terms in D-term variety. i M H → A � γ 3 γ 1 Z 31 k=1,...,a 31 Monday, April 13, 15

  22. Characterisation of Ω Inv Ω Inv • Embedding structure i M H → A � Naturally splits the Higgs phase states: ⇒ = H • ( M H ) = i ∗ ( H • ( A )) ⊕ [ H • ( M H ) /i ∗ ( H • ( A ))] ! ! ! Ω Higgs Ω Coulomb Ω Inv Ω Inv [ S.-J.L. , Z.-L.Wang, P.Yi `12] (cf.) [Bena, Berkooz, de Boer, El-Showk, van Den Bleeken `12] • Lefschetz Hyperplane Theorem implies that the Hodge diamond is of a cross shape. Monday, April 13, 15

  23. = Ω Inv = Ω Coulomb 4 5 • 1 • 1 0 0 26 26 0 2 0 6 1 0 0 0 0 0 0 3 0 0 0 0 26 26 0 0 • 1 0 0 3 0 0 0 0 0 0 0 0 0 2 0 0 2 0 0 26 26 0 0 0 0 2 0 1 0 0 1 Monday, April 13, 15

  24. Nonabelian Quivers Abelianisation Monday, April 13, 15

  25. θ 2 n 2 b a n 3 n 1 θ 3 θ 1 Monday, April 13, 15

  26. n 1 n 2 n 3 Monday, April 13, 15

  27. Abelianisation ˜ X X Monday, April 13, 15

  28. The Prescription in a Nutshell • [Martin, `00], [Ciocan-Fontanine, Kim, Sabbah, `06] • (cf.) [Hori, Vafa, `00] Monday, April 13, 15

  29. Loopless Quivers π � a = ι � ˆ o a 1 � � Bridging : , where . . . W = Weyl( G ) a = ˆ a ∧ e ( ∆ ) o | W | ˜ X X � o ∆ = L α root α Monday, April 13, 15

  30. Loopless Quivers � ye − x µ − y − 1 � �� � ω y ( T X ) ≡ x µ · 1 − e − x µ µ 1 X ) ∧ e ( ∆ ) � ω y ( T ˜ Index : , . . . Ω ( y ) = | W | ω y ( ∆ ) ˜ X x where . (1 − e − x ) · ( ye − x − y − 1 ) ω y ← f ω y ( x ) = Monday, April 13, 15

  31. Quivers with a Potential X ) ∧ e ( ˜ N ) 1 ∧ e ( ∆ ) � ω y ( T ˜ Index : Ω ( y ) = ω y ( ∆ ) , . . . ω y ( ˜ | W | N ) ˜ X x where . ω y ← f ω y ( x ) = (1 − e − x ) · ( ye − x − y − 1 ) Monday, April 13, 15

  32. Applications • Non-Abelian Quiver Invariant • Partition-sum Structure of the Index Monday, April 13, 15

  33. Applications • Non-Abelian Quiver Invariant • Partition-sum Structure of the Index Monday, April 13, 15

  34. Applications • Non-Abelian Quiver Invariant • Partition-sum Structure of the Index Chamber (a) Chamber (b) Higgs ( y ) = 1 y 2 + 7 + y 2 . Ω ( a ) Ω ( b ) Higgs ( y ) = 6 Coulomb ( y ) = 1 Ω ( a ) Ω ( b ) y 2 + 2 + y 2 Coulomb ( y ) = 1 Ω inv = 5 Monday, April 13, 15

  35. Applications • Non-Abelian Quiver Invariant • Partition-sum Structure of the Index Monday, April 13, 15

  36. Applications • Non-Abelian Quiver Invariant • Partition-sum Structure of the Index Monday, April 13, 15

  37. Applications • Non-Abelian Quiver Invariant • Partition-sum Structure of the Index P 1 = ( { 1 , 1 , 1 } ; { 1 } ) P { } { } P 2 = ( { 1 , 2 } ; { 1 } ) P { } { P 3 = ( { 3 } ; { 1 } ) Monday, April 13, 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend