bounds for the coupling time in queueing networks perfect
play

Bounds for the Coupling Time in Queueing Networks Perfect Simulation - PowerPoint PPT Presentation

Bounds for the Coupling Time in Queueing Networks Perfect Simulation J.G. Dopper 2 , B. Gaujal and J.-M. Vincent 1 1 Laboratory ID-IMAG MESCAL Project Universities of Grenoble, France { Bruno.Gaujal,Jean-Marc.Vincent } @imag.fr 2 Mathematical


  1. Bounds for the Coupling Time in Queueing Networks Perfect Simulation J.G. Dopper 2 , B. Gaujal and J.-M. Vincent 1 1 Laboratory ID-IMAG MESCAL Project Universities of Grenoble, France { Bruno.Gaujal,Jean-Marc.Vincent } @imag.fr 2 Mathematical Institute, Leiden University, Nederland jgdopper@math.leidenuniv.nl J.G. Dopper, B. Gaujal and J.-M. Vincent (Universities of Grenoble) Bounds for the Coupling Time in Queueing Networks Perfect Simulation MAM 2006, june12 1 / 27

  2. Outline Queueing Networks with finite capacity 1 Event modelling and monotonicity 2 Perfect simulation and coupling time 3 Acyclic networks 4 Synthesis and future works 5 J.G. Dopper, B. Gaujal and J.-M. Vincent (Universities of Grenoble) Bounds for the Coupling Time in Queueing Networks Perfect Simulation MAM 2006, june12 2 / 27

  3. Outline Queueing Networks with finite capacity 1 Event modelling and monotonicity 2 Perfect simulation and coupling time 3 Acyclic networks 4 Synthesis and future works 5 J.G. Dopper, B. Gaujal and J.-M. Vincent (Universities of Grenoble) Bounds for the Coupling Time in Queueing Networks Perfect Simulation MAM 2006, june12 3 / 27

  4. Queueing networks with finite capacity Network model Markov model Finite set of resources : Assumptions : servers - Poisson arrival, waiting room Routing strategies : - exponential distribution for service times, state dependent - probabilistic routing with overflow overflow strategy blocking strategy... ⇒ continuous time Markov chain Average performance : load of the system response time loss rate ... Problem Computation of the stationary distribution ⇒ state space explosion J.G. Dopper, B. Gaujal and J.-M. Vincent (Universities of Grenoble) Bounds for the Coupling Time in Queueing Networks Perfect Simulation MAM 2006, june12 4 / 27

  5. Queueing networks with finite capacity Network model Markov model Finite set of resources : C 1 λ 3 servers C λ C 0 3 1 λ 0 waiting room λ Routing strategies : λ 2 5 λ 4 C state dependent 2 Assumptions : overflow strategy blocking strategy... - Poisson arrival, Average performance : - exponential distribution for service times, load of the system - probabilistic routing with overflow response time loss rate ... ⇒ continuous time Markov chain Problem Computation of the stationary distribution ⇒ state space explosion J.G. Dopper, B. Gaujal and J.-M. Vincent (Universities of Grenoble) Bounds for the Coupling Time in Queueing Networks Perfect Simulation MAM 2006, june12 4 / 27

  6. Queueing networks with finite capacity Network model Markov model Finite set of resources : C 1 λ 3 servers C λ C 0 3 1 λ 0 waiting room λ Routing strategies : λ 2 5 λ 4 C state dependent 2 Assumptions : overflow strategy blocking strategy... - Poisson arrival, Average performance : - exponential distribution for service times, load of the system - probabilistic routing with overflow response time loss rate ... ⇒ continuous time Markov chain Problem Computation of the stationary distribution ⇒ state space explosion J.G. Dopper, B. Gaujal and J.-M. Vincent (Universities of Grenoble) Bounds for the Coupling Time in Queueing Networks Perfect Simulation MAM 2006, june12 4 / 27

  7. Related works Non reversible systems (reverse event) Product form solution ?? Widely studied domain - Analytical solution [Perros 94] - specific cases - numerical computation of normalization constant - Numerical computation [Stewart 94] - Approximation techniques [Onvural 90, Perros 94,...] - Simulation [Banks & al. 01,...] simulation of Markov models simulation of event graphs discrete event simulation perfect simulation [Mattson 04] J.G. Dopper, B. Gaujal and J.-M. Vincent (Universities of Grenoble) Bounds for the Coupling Time in Queueing Networks Perfect Simulation MAM 2006, june12 5 / 27

  8. Outline Queueing Networks with finite capacity 1 Event modelling and monotonicity 2 Perfect simulation and coupling time 3 Acyclic networks 4 Synthesis and future works 5 J.G. Dopper, B. Gaujal and J.-M. Vincent (Universities of Grenoble) Bounds for the Coupling Time in Queueing Networks Perfect Simulation MAM 2006, june12 6 / 27

  9. Event modelling Queueing model : C 1 λ 3 C λ C 0 3 λ 1 0 λ λ 2 5 λ 4 C 2 Event description : rate origin destination enabling condition routing policy e 0 Q − 1 Q 0 none rejection if Q 0 is full λ 0 e 1 λ 1 Q 0 Q 1 s 0 > 0 rejection if Q 1 is full e 2 Q 0 Q 2 s 0 > 0 rejection if Q 2 is full λ 2 e 3 λ 3 Q 1 Q 3 s 1 > 0 rejection if Q 3 is full e 4 λ 4 Q 2 Q 3 s 2 > 0 rejection if Q 3 is full e 5 Q 3 Q − 1 s 3 > 0 none λ 5 J.G. Dopper, B. Gaujal and J.-M. Vincent (Universities of Grenoble) Bounds for the Coupling Time in Queueing Networks Perfect Simulation MAM 2006, june12 7 / 27

  10. Event modelling Multidimensional state space Poisson driven system X = X 0 × · · · × X K − 1 ] with X i = { 0 , · · · , C i } . Event e : ❀ transition function Φ( ., e ) ; ❀ Poisson process λ e Uniformization ⇒ GSMP representation λ e and P ( event e ) = λ e � Λ = Λ ; Trajectory : { e n } n ∈ Z i.i.d . e ⇒ Homogeneous Discrete Time Markov Chain [Bremaud 99] X n + 1 = Φ( X n , e n + 1 ) . J.G. Dopper, B. Gaujal and J.-M. Vincent (Universities of Grenoble) Bounds for the Coupling Time in Queueing Networks Perfect Simulation MAM 2006, june12 8 / 27

  11. Event modelling Multidimensional state space Poisson driven system X = X 0 × · · · × X K − 1 ] States with X i = { 0 , · · · , C i } . Event e : Time Events ❀ transition function Φ( ., e ) ; e1 e2 e3 ❀ Poisson process λ e e4 Uniformization ⇒ GSMP representation λ e and P ( event e ) = λ e � Λ = Λ ; Trajectory : { e n } n ∈ Z i.i.d . e ⇒ Homogeneous Discrete Time Markov Chain [Bremaud 99] X n + 1 = Φ( X n , e n + 1 ) . J.G. Dopper, B. Gaujal and J.-M. Vincent (Universities of Grenoble) Bounds for the Coupling Time in Queueing Networks Perfect Simulation MAM 2006, june12 8 / 27

  12. Event modelling Multidimensional state space Poisson driven system X = X 0 × · · · × X K − 1 ] States with X i = { 0 , · · · , C i } . Event e : Time Events ❀ transition function Φ( ., e ) ; e1 e2 e3 ❀ Poisson process λ e e4 Uniformization ⇒ GSMP representation λ e and P ( event e ) = λ e � Λ = Λ ; Trajectory : { e n } n ∈ Z i.i.d . e ⇒ Homogeneous Discrete Time Markov Chain [Bremaud 99] X n + 1 = Φ( X n , e n + 1 ) . J.G. Dopper, B. Gaujal and J.-M. Vincent (Universities of Grenoble) Bounds for the Coupling Time in Queueing Networks Perfect Simulation MAM 2006, june12 8 / 27

  13. Monotonicity of routing strategy ( X , ≺ ) partially ordered set (componentwise) x = [ x 0 , x 1 , · · · , x K − 1 ] ≺ y = [ y 0 , y 1 , · · · , y K − 1 ] iff ∀ i , x i � y i . An event e is said to be monotone if x ≺ y ⇒ Φ( x , e ) ≺ Φ( y , e ) . Examples [Glasserman and Yao] All of these routing events are monotone: - external arrival with overflow and rejection - routing with overflow and rejection or blocking - routing to the shortest available queue - routing to the shortest mean available response time - general index policies [Palmer-Mitrani] - rerouting inside queues ... J.G. Dopper, B. Gaujal and J.-M. Vincent (Universities of Grenoble) Bounds for the Coupling Time in Queueing Networks Perfect Simulation MAM 2006, june12 9 / 27

  14. Monotonicity of routing strategy ( X , ≺ ) partially ordered set (componentwise) x = [ x 0 , x 1 , · · · , x K − 1 ] ≺ y = [ y 0 , y 1 , · · · , y K − 1 ] iff ∀ i , x i � y i . An event e is said to be monotone if x ≺ y ⇒ Φ( x , e ) ≺ Φ( y , e ) . Examples [Glasserman and Yao] All of these routing events are monotone: - external arrival with overflow and rejection - routing with overflow and rejection or blocking - routing to the shortest available queue - routing to the shortest mean available response time - general index policies [Palmer-Mitrani] - rerouting inside queues ... J.G. Dopper, B. Gaujal and J.-M. Vincent (Universities of Grenoble) Bounds for the Coupling Time in Queueing Networks Perfect Simulation MAM 2006, june12 9 / 27

  15. Outline Queueing Networks with finite capacity 1 Event modelling and monotonicity 2 Perfect simulation and coupling time 3 Acyclic networks 4 Synthesis and future works 5 J.G. Dopper, B. Gaujal and J.-M. Vincent (Universities of Grenoble) Bounds for the Coupling Time in Queueing Networks Perfect Simulation MAM 2006, june12 10 / 27

  16. Classical forward simulation Forward Representation : transition fonction X n + 1 = Φ( X n , e n + 1 ) . ← x 0 x Trajectory { choice of the initial state at time =0 } n = 0; repeat n ← n + 1; e ← Random event () ; x ← Φ( x , e ) ; { computation of the next state X n + 1 } until some empirical criteria return x Convergence : biased sample Sampling : Warm-up period Complexity Related to the stabilization period Estimation : replication or ergodic estimation J.G. Dopper, B. Gaujal and J.-M. Vincent (Universities of Grenoble) Bounds for the Coupling Time in Queueing Networks Perfect Simulation MAM 2006, june12 11 / 27

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend