stabilization of branching queueing networks
play

Stabilization of Branching Queueing Networks Tom Brzdil 1 Stefan - PowerPoint PPT Presentation

Stabilization of Branching Queueing Networks Tom Brzdil 1 Stefan Kiefer 2 1 Masaryk University, Brno, Czech Republic 2 University of Oxford, UK STACS, Paris 02 March 2012 Tom Brzdil, Stefan Kiefer Stabilization of Branching Queueing


  1. Stabilization of Branching Queueing Networks Tomáš Brázdil 1 Stefan Kiefer 2 1 Masaryk University, Brno, Czech Republic 2 University of Oxford, UK STACS, Paris 02 March 2012 Tomáš Brázdil, Stefan Kiefer Stabilization of Branching Queueing Networks

  2. Motivation Queueing networks are simple and general. Attractive for modeling parallelism: Hardware, especially large-scale multi-core systems: Full-system performance simulators do not scale. Queueing theory gives a more abstract analysis. Software, especially message passing: asynchronous programs on multi-core computers distributed programs on a network Tomáš Brázdil, Stefan Kiefer Stabilization of Branching Queueing Networks

  3. Example: Router 0 . 5 0 . 7 ε A D M 0 . 25 0 . 3 0 . 25 S 1 C S 2 Tomáš Brázdil, Stefan Kiefer Stabilization of Branching Queueing Networks

  4. Example: Router 0 . 5 0 . 7 ε A D M 0 . 25 0 . 3 0 . 25 S 1 C S 2 Textual representation of the same thing: 0 . 5 A ֒ − → D 0 . 7 1 1 ֒ − → M ֒ − → D ֒ → M − D S 1 C 1 0 . 25 0 ֒ → A − ֒ − − → S 1 A 0 . 3 1 1 ֒ − → C ֒ − → D ֒ → ε − D S 2 M 0 . 25 A ֒ − − → S 2 Tomáš Brázdil, Stefan Kiefer Stabilization of Branching Queueing Networks

  5. Example: Router 0 . 5 0 . 7 ε A D M 0 . 25 0 . 3 0 . 25 S 1 C S 2 Textual representation of the same thing: 0 . 5 A ֒ − → D 0 . 7 1 1 ֒ − → M ֒ − → D ֒ → M − D S 1 C 1 0 . 25 0 ֒ → A − ֒ − − → S 1 A 0 . 3 1 1 ֒ − → C ֒ → D − ֒ − → ε D S 2 M 0 . 25 A ֒ − − → S 2 Also given: arrival rate α A queue rates µ A , µ S 1 , . . . of busy queues Continuous-Time Markov Chain – Infinite-State! Tomáš Brázdil, Stefan Kiefer Stabilization of Branching Queueing Networks

  6. Jackson Networks 0 . 5 0 . 7 ε A D M 0 . 25 0 . 3 0 . 25 S 1 C S 2 Such networks are called Jackson networks (classical model). Nice properties: Stability is easy to determine. product form solutions in “steady state”: Pr ( S 1 = 3 and D = 2 ) = Pr ( S 1 = 3 ) · Pr ( D = 2 ) But shortcomings in modeling: just one new task per one old task no (dynamic) control of the network Tomáš Brázdil, Stefan Kiefer Stabilization of Branching Queueing Networks

  7. Branching Queueing Networks New model: Branching Queueing Networks (BQNs) 1 / 5 1 / 6 A ֒ − − → B , B B ֒ − − → A , B 1 0 ֒ → A − 4 / 5 5 / 6 A ֒ − − → ε B ֒ − − → ε Rates as before: α A , µ A , µ B > 0 Similar models: a bit like pushdown systems, but parallel a bit like stochastic Petri nets, but of a special form Tomáš Brázdil, Stefan Kiefer Stabilization of Branching Queueing Networks

  8. Branching Queueing Networks New model: Branching Queueing Networks (BQNs) 1 / 5 1 / 6 A ֒ − − → B , B B ֒ − − → A , B 1 0 ֒ → A − 4 / 5 5 / 6 A ֒ − − → ε B ֒ − − → ε Rates as before: α A , µ A , µ B > 0 A B Tomáš Brázdil, Stefan Kiefer Stabilization of Branching Queueing Networks

  9. Branching Queueing Networks New model: Branching Queueing Networks (BQNs) 1 / 5 1 / 6 A ֒ − − → B , B B ֒ − − → A , B 1 0 ֒ → A − 4 / 5 5 / 6 A ֒ − − → ε B ֒ − − → ε Rates as before: α A , µ A , µ B > 0 A B Tomáš Brázdil, Stefan Kiefer Stabilization of Branching Queueing Networks

  10. Branching Queueing Networks New model: Branching Queueing Networks (BQNs) 1 / 5 1 / 6 A ֒ − − → B , B B ֒ − − → A , B 1 0 ֒ − → A 4 / 5 5 / 6 A ֒ − − → ε B ֒ − − → ε Rates as before: α A , µ A , µ B > 0 A B Topic of this talk: Is a given BQN stable ?? stable def = expected return time to “completely empty” is finite Tomáš Brázdil, Stefan Kiefer Stabilization of Branching Queueing Networks

  11. No Product Form Consider the BQN 1 1 1 1 0 ֒ − → A A ֒ − → B , C B ֒ → ε − C ֒ − → ε No product form: Take α A = 1 , µ A = µ B = µ C = 3. Then in steady-state: Pr ( C ≥ 1 ) = 1 / 3 Pr ( C ≥ 1 | B ≥ 1 ) ≥ 3 / 7 Tomáš Brázdil, Stefan Kiefer Stabilization of Branching Queueing Networks

  12. No Product Form Consider the BQN 1 1 1 1 0 ֒ − → A A ֒ − → B , C B ֒ → ε − C ֒ − → ε No product form: Take α A = 1 , µ A = µ B = µ C = 3. Then in steady-state: Pr ( C ≥ 1 ) = 1 / 3 Pr ( C ≥ 1 | B ≥ 1 ) ≥ 3 / 7 Analysis of BQNs harder than for Jackson networks Tomáš Brázdil, Stefan Kiefer Stabilization of Branching Queueing Networks

  13. Balance Equations 1 1 / 5 1 / 6 0 ֒ − → A A ֒ − − → B , B B ֒ − − → A , B 4 / 5 5 / 6 A ֒ − − → ε B ֒ − − → ε µ A = 0 . 4 µ B = 0 . 3 α A = 0 . 2 (Pre-)Suppose a form of balance: # tasks processed at X per sec = # tasks arriving at X per sec Here: λ A = 0 . 2 + λ B · ( 1 / 6 ) λ B = λ A · ( 1 / 5 ) · 2 + λ B · ( 1 / 6 ) We call the solution λ the “throughput”. Note: the speeds of the queues µ A , µ B do not occur. Here: λ A = 0 . 22 λ B = 0 . 10 Tomáš Brázdil, Stefan Kiefer Stabilization of Branching Queueing Networks

  14. A Stability Result Proposition Given a BQN. Let λ be the throughput, i.e., λ solves the balance equations λ = α + M λ . Suppose λ < µ (in all components). Then the BQN is stable. Conversely, if the BQN is stable, then there is λ with λ = α + M λ < µ . Tomáš Brázdil, Stefan Kiefer Stabilization of Branching Queueing Networks

  15. A Stability Result Proposition Given a BQN. Let λ be the throughput, i.e., λ solves the balance equations λ = α + M λ . Suppose λ < µ (in all components). Then the BQN is stable. Conversely, if the BQN is stable, then there is λ with λ = α + M λ < µ . Theorem Stability of a BQN can be decided in polynomial time. Proposition If a BQN is stable, it is “very much so”: in steady state there is an exponential moment of the total queue size, i.e., there is δ > 0 such that � x ∈ N n exp ( δ � x � ) Pr ( x ) exists. Tomáš Brázdil, Stefan Kiefer Stabilization of Branching Queueing Networks

  16. Proof of the Stability Result The stability result requires a delicate proof (no product form). 1 / 5 1 / 6 ֒ − − → B , B ֒ − − → A , B x B → A A B 1 0 ֒ − 4 / 5 5 / 6 A ֒ − − → ε B ֒ − − → ε 3 Consider “drift” for all points: 2 1 x A 1 2 3 Tomáš Brázdil, Stefan Kiefer Stabilization of Branching Queueing Networks

  17. Proof of the Stability Result The stability result requires a delicate proof (no product form). 1 / 5 1 / 6 ֒ − − → B , B ֒ − − → A , B x B → A A B 1 0 ֒ − 4 / 5 5 / 6 A ֒ − − → ε B ֒ − − → ε 3 Consider “drift” for all points: � α A � For ( 0 , 0 ) : [ 0 ] = 0 2 1 [ 0 ] x A 1 2 3 Tomáš Brázdil, Stefan Kiefer Stabilization of Branching Queueing Networks

  18. Proof of the Stability Result The stability result requires a delicate proof (no product form). 1 / 5 1 / 6 ֒ − − → B , B ֒ − − → A , B x B → A A B 1 0 ֒ − 4 / 5 5 / 6 A ֒ − − → ε B ֒ − − → ε 3 Consider “drift” for all points: � α A � For ( 0 , 0 ) : [ 0 ] = 0 2 For (+ , 0 ) : [ 0 A ] = [ 0 ] + [ A ] with �� − 1 � � �� 0 [ A ] = µ A · + 0 ( 1 / 5 ) · 2 1 [ 0 A ] [ 0 ] x A 1 2 3 Tomáš Brázdil, Stefan Kiefer Stabilization of Branching Queueing Networks

  19. Proof of the Stability Result The stability result requires a delicate proof (no product form). 1 / 5 1 / 6 ֒ − − → B , B ֒ − − → A , B x B → A A B 1 0 ֒ − 4 / 5 5 / 6 A ֒ − − → ε B ֒ − − → ε 3 Consider “drift” for all points: � α A � For ( 0 , 0 ) : [ 0 ] = 0 2 For (+ , 0 ) : [ 0 A ] = [ 0 ] + [ A ] with �� − 1 � � �� 0 [ A ] = µ A · + 0 ( 1 / 5 ) · 2 For ( 0 , +) : [ 0 B ] = [ 0 ] + [ B ] 1 [ 0 B ] [ 0 A ] [ 0 ] x A 1 2 3 Tomáš Brázdil, Stefan Kiefer Stabilization of Branching Queueing Networks

  20. Proof of the Stability Result The stability result requires a delicate proof (no product form). 1 / 5 1 / 6 ֒ − − → B , B ֒ − − → A , B x B → A A B 1 0 ֒ − 4 / 5 5 / 6 A ֒ − − → ε B ֒ − − → ε 3 Consider “drift” for all points: � α A � For ( 0 , 0 ) : [ 0 ] = 0 2 For (+ , 0 ) : [ 0 A ] = [ 0 ] + [ A ] with �� − 1 � � �� 0 [ A ] = µ A · + 0 ( 1 / 5 ) · 2 For ( 0 , +) : [ 0 B ] = [ 0 ] + [ B ] 1 [ 0 B ] [ 0 AB ] For (+ , +) : [ 0 AB ] = [ 0 ] + [ A ] + [ B ] [ 0 A ] [ 0 ] x A 1 2 3 Tomáš Brázdil, Stefan Kiefer Stabilization of Branching Queueing Networks

  21. Proof of the Stability Result The stability result requires a delicate proof (no product form). 1 / 5 1 / 6 ֒ − − → B , B ֒ − − → A , B x B → A A B 1 0 ֒ − 4 / 5 5 / 6 A ֒ − − → ε B ֒ − − → ε 3 Consider “drift” for all points: � α A � For ( 0 , 0 ) : [ 0 ] = 0 2 For (+ , 0 ) : [ 0 A ] = [ 0 ] + [ A ] with �� − 1 � � �� 0 [ A ] = µ A · + 0 ( 1 / 5 ) · 2 For ( 0 , +) : [ 0 B ] = [ 0 ] + [ B ] 1 [ 0 B ] [ 0 AB ] For (+ , +) : [ 0 AB ] = [ 0 ] + [ A ] + [ B ] [ 0 A ] Find a Lyapunov function [ 0 ] w.r.t. which the drift is negative x A 1 2 3 Tomáš Brázdil, Stefan Kiefer Stabilization of Branching Queueing Networks

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend