boundary conditions for two sided and tempered fractional
play

Boundary Conditions for Two-Sided (and Tempered) Fractional - PowerPoint PPT Presentation

. . . . . . . . . . . . . . Boundary Conditions for Two-Sided (and Tempered) Fractional Difgusion James F. Kelly , Harish Sankaranarayanan, and Mark M. Meerschaert Department of Statistics and Probability Michigan State University


  1. . . . . . . . . . . . . . . Boundary Conditions for Two-Sided (and Tempered) Fractional Difgusion James F. Kelly , Harish Sankaranarayanan, and Mark M. Meerschaert Department of Statistics and Probability Michigan State University June 22, 2018 Kelly et al. (MSU) Two-Sided BCs June 22, 2018 . . . . . . . . . . . . . . . . . . . . . . . . . . 1 / 48

  2. . 1 . . . . . . . . . . Boundary Conditions (BCs) for One-Sided Fractional Difgusion . 2 Two-Sided Fractional Difgusion: BCs and Numerical Methods 3 Two-Sided Fractional Difgusion: Analytical Steady-State Solutions 4 One-Sided Tempered Fractional Difgusion 5 Summary and Open Problems Kelly et al. (MSU) Two-Sided BCs June 22, 2018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 / 48

  3. . Two-sided fractional difgusion equations are important in many . . . . . . . . . . Motivation applications: transport in heterogeneous porous media (Benson et al., . 2000), turbulence modeling (Chen, 2006), (del-Castillo Negrete et al., 2004), (Gunzburger et al., 2018), and biomedical acoustics (Treeby and Cox, 2010). Most numerical methods assume Dirichlet boundary conditions (BCs): (Meerschaert and Tadjeran, 2006) , (Mao and Karniadakis, 2018), (Samiee et al., 2018). For anomalous difgusion, a homogeneous Dirichlet BC models an absorbing boundary. Kelly et al. (MSU) Two-Sided BCs June 22, 2018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 / 48

  4. . . . . . . . . . . . . . . Motivation However, many of these applications involve a conserved quantity in a bounded domain. boundary and the total mass does not change. Recently, efgort has been spent on developing mass-preserving, refmecting (Neumann) BCs for space fractional difgusion equations (Ma, 2017), (Baeumer et al., 2018a,b), (Deng et al., 2018). Kelly et al. (MSU) Two-Sided BCs June 22, 2018 . . . . . . . . . . . . . . . . . . . . . . . . . . 4 / 48 From a stochastic point of view, particles are refmected at the

  5. . . . . . . . . . . . . . . One-Sided Fractional Difgusion Equation: Riemann-Liouville The positive (left) Riemann-Liouville derivative on the bounded 1 L To derive refmecting boundary conditions , write in conservation form Kelly et al. (MSU) Two-Sided BCs June 22, 2018 . . . . . . . . . . . . . . 5 / 48 . . . . . . . . . . . . Consider one-sided space-fractional (1 < α ≤ 2) difgusion equation on [ L , R ] : ∂ ∂ tu ( x , t ) = C D α L + u ( x , t ) interval [ L , R ] is: L + u ( x , t ) = ∂ n ∂ n ∫ x u ( y , t ) D α ∂ x n I n − α L + u ( x , t ) = ( x − y ) α − n + 1 dy Γ( n − α ) ∂ x n ∂ tu ( x , t ) + ∂ ∂ ∂ xF RL ( x , t ) = 0 with fmux F RL ( x , t ) = − C D α − 1 L + u ( x , t ) .

  6. . . . . . . . . . . . . . . Refmecting Boundary Conditions: Riemann-Liouville time t . Integrate the mass conservation equation L L mass conservation, yielding a refmecting BC (Baeumer et al., 2018a): Kelly et al. (MSU) Two-Sided BCs June 22, 2018 . . . . . . . . . . . . . . 6 / 48 . . . . . . . . . . . . ∫ R Assume some initial mass M 0 = L u ( x , t ) dx that is conserved for all ∂ M 0 ∫ R ∂ = ∂ tu ( x , t ) dx ∂ t ∫ R ∂ = − ∂ xF RL ( x , t ) dx = F RL ( L , t ) − F RL ( R , t ) . Imposing zero fmux at the boundary F RL ( L , t ) = F RL ( R , t ) = 0 ensures D α − 1 L + u ( x , t ) = 0 for x = L and x = R for all t ≥ 0

  7. . . . . . . . . . . . . One-Sided Fractional Difgusion Equation: Patie-Simon . Also consider an alternative space-fractional difgusion equation The Patie-Simon (Patie and Simon, 2012) or mixed Caputo (Baeumer 1 L is a Caputo derivative. Applying zero fmux yields a refmecting BC: Kelly et al. (MSU) Two-Sided BCs June 22, 2018 . . . . . . . . . . . . . . . 7 / 48 . . . . . . . . . . . . ∂ ∂ tu ( x , t ) = C D α L + u ( x , t ) et al., 2018a) fractional derivative for 1 < α ≤ 2 is u ′ ( y , t ) L + u ( x , t ) = ∂ ∂ ∫ x D α ∂ x ∂ α − 1 L + u ( x , t ) = ( x − y ) α − 1 dy Γ( 2 − α ) ∂ x The corresponding fmux is F C ( x , t ) = − C ∂ α − 1 L + u ( x , t ) , where ∂ α − 1 L + ∂ α − 1 L + u ( x , t ) = 0 for x = L and x = R for all t ≥ 0 .

  8. . . . . . . . . . . . . . . . Numerical Solutions (a) Riemann-Liouville fmux (b) Caputo fmux Figure: Numerical solution using a) Riemann-Liouville fractional derivative and b) Patie-Simon Kelly et al. (MSU) Two-Sided BCs June 22, 2018 . . . . . . . . . . . . . . 8 / 48 . . . . . . . . . . . 5 5 4 4 3 3 u(x,t) u(x,t) 2 2 1 1 0 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 x x fractional derivative with refmecting BCs. α = 1 . 5, C = 1 on 0 ≤ x ≤ 1 at time t = 0 (solid line), t = 0 . 05 (dashed), t = 0 . 1 (dash dot), t = 0 . 5 (dotted).

  9. . 1 . . . . . . . . . . Plan Boundary Conditions (BCs) for One-Sided Fractional Difgusion . 2 Two-Sided Fractional Difgusion: BCs and Numerical Methods 3 Two-Sided Fractional Difgusion: Analytical Steady-State Solutions 4 One-Sided Tempered Fractional Difgusion 5 Summary and Open Problems Kelly et al. (MSU) Two-Sided BCs June 22, 2018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 / 48

  10. . . . . . . . . . . . . . . Two-Sided Fractional Difgusion Equation: Riemann-Liouville source term. The positive (left) and negative (right) Riemann-Liouville fractional derivatives are given by 1 L x Kelly et al. (MSU) Two-Sided BCs June 22, 2018 . . . . . . . . . . . . . . 10 / 48 . . . . . . . . . . . . The two-sided space-fractional difgusion equation on [ L , R ] : ∂ ∂ tu ( x , t ) = pC D α L + u ( x , t ) + qC D α R − u ( x , t ) + s ( x , t ) where 1 < α ≤ 2, where C > 0, p , q ≥ 0, and p + q = 1, while s ( x , t ) is a L + u ( x , t ) = ∂ n ∂ n ∫ x u ( y , t ) D α ∂ x n I n − α L + u ( x , t ) = ( x − y ) α − n + 1 dy Γ( n − α ) ∂ x n R − u ( x , t ) = ( − 1 ) n ∂ n ( − 1 ) n ∂ n u ( y , t ) ∫ R D α ∂ x n I n − α R − u ( x , t ) = ( y − x ) α − n + 1 dy Γ( n − α ) ∂ x n

  11. . . . . . . . . . . . Two-Sided Fractional Difgusion Equation: Patie-Simon We also consider an alternative space-fractional difgusion equation 1 . L 1 x using the Patie-Simon (Patie and Simon, 2012) or mixed Caputo 1 L x are the positive (left) and negative (right) Caputo derivatives. Kelly et al. (MSU) Two-Sided BCs June 22, 2018 . 11 / 48 . . . . . . . . . . . . . . . . . . . . . . . . . . . ∂ ∂ tu ( x , t ) = pC D α L + u ( x , t ) + qC D α R − u ( x , t ) + s ( x , t ) u ′ ( y , t ) L + u ( x , t ) = ∂ ∂ ∫ x D α ∂ x ∂ α − 1 L + u ( x , t ) = Γ( 2 − α ) ∂ x ( x − y ) α − 1 dy u ′ ( y , t ) R − u ( x , t ) = − ∂ ∂ ∫ R D α ∂ x ∂ α − 1 R − u ( x , t ) = ( y − x ) α − 1 dy Γ( 2 − α ) ∂ x (Baeumer et al., 2018a) fractional derivatives for 1 < α ≤ 2. u ( n ) ( y , t ) ∫ x ∂ α L + u ( x , t ) = ( x − y ) α − n + 1 dy Γ( n − α ) u ( n ) ( y , t ) ( − 1 ) n ∫ R ∂ α R − u ( x , t ) = ( y − x ) α − n + 1 dy Γ( n − α )

  12. . . . . . . . . . . . . . . . Conservation Form conservation (continuity) equation nonlocal difgusion. The fmux function is given by fmux. Kelly et al. (MSU) Two-Sided BCs June 22, 2018 . . . . . . . . . . . . . . 12 / 48 . . . . . . . . . . . Physically, u ( x , t ) represents concentration governed by a local mass ∂ tu ( x , t ) + ∂ ∂ ∂ xF ( x , t ) = 0 F ( x , t ) is a fmux function (generalized Fick’s law) that accounts for F RL ( x , t ) = qC D α − 1 R − u ( x , t ) − pC D α − 1 L + u ( x , t ) F C ( x , t ) = qC ∂ α − 1 R − u ( x , t ) − pC ∂ α − 1 L + u ( x , t ) where F RL ( x , t ) is a Riemann-Liouville fmux and F C ( x , t ) is a Caputo

  13. . . . . . . . . . . . . . . . . Refmecting (no-fmux) Boundary Conditions 1). (Baeumer et al., 2018a). Kelly et al. (MSU) Two-Sided BCs June 22, 2018 . . . . . . . . . . . . . 13 / 48 . . . . . . . . . . . Identify a no-fmux BC by setting F ( x , t ) = 0 at the boundary. Setting F ( x , t ) = 0 at x = L and x = R yields refmecting BCs: p D α − 1 L + u ( x , t ) = q D α − 1 R − u ( x , t ) for x = L and x = R for all t ≥ 0 . p ∂ α − 1 L + u ( x , t ) = q ∂ α − 1 R − u ( x , t ) for x = L and x = R for all t ≥ 0 . These boundary conditions are nonlocal since the BC at x = L or x = R depends on all values of u ( x , t ) in the interval [ L , R ] (if p ̸ = 0 or If p = 1, these BCs reduce to the refmecting BCs proposed in

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend