bottomonium at finite temperature
play

Bottomonium at finite temperature A signal for the quark-gluon - PowerPoint PPT Presentation

Bottomonium at finite temperature A signal for the quark-gluon plasma from lattice NRQCD Tim Harris + FASTSUM Anisotropic Symanzik gauge/2+1 Wilson clover a 1 (GeV) m /m m L N s N s 1.5 3.5 0.446 3.9 16 128 But m b


  1. Bottomonium at finite temperature A signal for the quark-gluon plasma from lattice NRQCD Tim Harris + FASTSUM

  2. Anisotropic Symanzik gauge/2+1 Wilson clover a − 1 (GeV) ξ m π /m ρ m π L N s N τ s 1.5 3.5 0.446 3.9 16 128 • But m b ∼ 5 GeV...

  3. Anisotropic Symanzik gauge/2+1 Wilson clover a − 1 (GeV) ξ m π /m ρ m π L N s N τ s 1.5 3.5 0.446 3.9 16 128 • But m b ∼ 5 GeV... Effective field theory for heavy quarks • Omit modes � m b ∼ 5 GeV. • Power counting in ( p/m b ) 2 ∼ v 2 ≈ 0 . 1 . • Heavy quark phase symmetry.

  4. Anisotropic Symanzik gauge/2+1 Wilson clover a − 1 (GeV) ξ m π /m ρ m π L N s N τ s 1.5 3.5 0.446 3.9 16 128 • But m b ∼ 5 GeV... Effective field theory for heavy quarks • Omit modes � m b ∼ 5 GeV. • Power counting in ( p/m b ) 2 ∼ v 2 ≈ 0 . 1 . • Heavy quark phase symmetry. Eucl. Cont. NRQCD Lagrangian + D τ − D 2 � � L 0 = ψ † ( x ) ψ ( x ) , 2 m b

  5. Anisotropic Symanzik gauge/2+1 Wilson clover a − 1 (GeV) ξ m π /m ρ m π L N s N τ s 1.5 3.5 0.446 3.9 16 128 • But m b ∼ 5 GeV... Effective field theory for heavy quarks • Omit modes � m b ∼ 5 GeV. • Power counting in ( p/m b ) 2 ∼ v 2 ≈ 0 . 1 . • Heavy quark phase symmetry. Eucl. Cont. NRQCD Lagrangian + D τ − D 2 � � L 0 = ψ † ( x ) ψ ( x ) , 2 m b − ( D 2 ) 2 � + ig 0 � δ L v 2 = ψ † ( x ) ( D · E − E · D ) ψ ( x ) , 8 m 3 8 m 2 b b � − g 0 σ · ( D × E − E × D ) − g 0 � δ L σ ,v 4 = ψ † ( x ) σ · B ψ ( x ) . 8 m 2 2 m b b

  6. � � � � 1 − a τ H 0 | n τ + a τ 1 − a τ H 0 | n τ U † G ( n + a τ e τ ) = τ ( n ) (1 − a τ δH ) G ( n ) 2 2 Lattice NRQCD • Heavy quark propagators solve initial value problem = ⇒ cheap. ☛ ‘Energy shift’ undefined. • No continuum limit! Must keep a − 1 � m b .

  7. � � � � 1 − a τ H 0 | n τ + a τ 1 − a τ H 0 | n τ U † G ( n + a τ e τ ) = τ ( n ) (1 − a τ δH ) G ( n ) 2 2 Lattice NRQCD • Heavy quark propagators solve initial value problem = ⇒ cheap. ☛ ‘Energy shift’ undefined. • No continuum limit! Must keep a − 1 � m b . Tuning bare parameters • Heavy quark rest mass plays no role. • Tune ˆ m b via meson dispersion relation. • Use 1 S spin-averaged ‘kinetic mass’.

  8. Lattice Experimental 0.1 0.08 χ b 2 (1 P ) 0.06 h b (1 P ) χ b 1 (1 P ) χ b 0 (1 P ) a τ M − a τ M Υ 0.04 0.02 0 η b (1 S ) -0.02 0 − + 1 + − 0 ++ 1 ++ 2 ++ J P C

  9. T 0

  10. T QGP T c HG 0

  11. Credit: Jeffery Mitchell. VNI model by Klaus Kinder-Geiger and Ron Longacre, Brookhaven National Laboratory

  12. Credit: Jeffery Mitchell. VNI model by Klaus Kinder-Geiger and Ron Longacre, Brookhaven National Laboratory A signal for the QGP • Suppression of J/ψ yield in RHICs [Matsui & Satz]. • b -quark ‘cleaner’ probe. • Sequential Υ suppression observed at LHC arxiv:1208.2826 .

  13. Finite temperature • Simulate with L τ = N τ a τ = β and appropriate b.c.s. • Fixed-scale approach: vary temperature by changing N τ . N s N τ T/T c N cfg 24 { 16, . . . ,40 } { 1.75, . . . ,0.70 } ≥ 500

  14. Υ χ b 1 0.6 0.7 T/T c = 0 . 22 T/T c = 0 . 22 0.55 0.65 T/T c = 1 . 75 T/T c = 1 . 75 0.5 0.6 T/T c = 1 . 40 T/T c = 1 . 40 0.45 0.55 T/T c = 1 . 17 T/T c = 1 . 17 a τ E ( τ ) a τ E ( τ ) 0.4 0.5 T/T c = 1 . 00 T/T c = 1 . 00 T/T c = 0 . 88 T/T c = 0 . 88 0.35 0.45 T/T c = 0 . 78 T/T c = 0 . 78 0.3 0.4 T/T c = 0 . 70 T/T c = 0 . 70 0.25 0.35 0.2 0.3 0.15 0.25 0 10 20 30 40 50 60 0 10 20 30 40 50 60 τ/a τ τ/a τ Figure: Temperature dependence of the effective energies Finite temperature • Simulate with L τ = N τ a τ = β and appropriate b.c.s. • Fixed-scale approach: vary temperature by changing N τ . N s N τ T/T c N cfg 24 { 16, . . . ,40 } { 1.75, . . . ,0.70 } ≥ 500

  15. 1.12 1.4 Υ χ b 1 m b = 1 . 20 ˆ m b = 1 . 20 ˆ 1.35 1.1 ˆ m b = 2 . 00 m b = 2 . 00 ˆ G ( τ, T/T c = 1 . 75) /G ( τ, T/T c = 0) G ( τ, T/T c = 1 . 75) /G ( τ, T/T c = 0) m b = 2 . 92 ˆ m b = 2 . 92 ˆ 1.3 m b = 4 . 01 ˆ m b = 4 . 01 ˆ 1.08 m b = 12 . 32 ˆ m b = 12 . 32 ˆ 1.25 1.06 1.2 1.04 1.15 1.02 1.1 1 1.05 0.98 1 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 τ/a τ τ/a τ Figure: ˆ m b -dependence of the correlators

  16. Cont. nearly-free dynamics in NRQCD � ∞ d ω π e − ( ω + ω 0 ) τ ρ ( ω ) G ( τ ) ∼ − ω 0

  17. Cont. nearly-free dynamics in NRQCD � ∞ d ω π e − ( ω + ω 0 ) τ ρ ( ω ) G ( τ ) ∼ − ω 0 G free ( τ ) ∼ e − ω 0 τ ρ free ( ω ) ∼ ω α Θ( ω ) = ⇒ τ α +1

  18. Cont. nearly-free dynamics in NRQCD � ∞ d ω π e − ( ω + ω 0 ) τ ρ ( ω ) G ( τ ) ∼ − ω 0 G free ( τ ) ∼ e − ω 0 τ ρ free ( ω ) ∼ ω α Θ( ω ) = ⇒ τ α +1 γ eff ( τ ) = − τ G ′ ( τ ) − → ω 0 τ + α + 1 G ( τ )

  19. Cont. nearly-free dynamics in NRQCD � ∞ d ω π e − ( ω + ω 0 ) τ ρ ( ω ) G ( τ ) ∼ − ω 0 G free ( τ ) ∼ e − ω 0 τ ρ free ( ω ) ∼ ω α Θ( ω ) = ⇒ τ α +1 γ eff ( τ ) = − τ G ′ ( τ ) − → ω 0 τ + α + 1 G ( τ ) ☛ Temperature dependence enters through interaction with the hot medium and not kinematically via the boundary conditions.

  20. 5 3 S 1 (vector) 4 3 γ eff 2 1 T=0.42T c T=1.05T c 0 0 8 16 24 32 T=1.40T c 7 T=2.09T c 6 free field 3 P 1 (axial-vector) 5 4 γ eff 3 2 1 0 0 8 16 24 32 τ /a τ Figure: Previous study suggested melting P -wave at T/T c ∼ 2 arXiv:1010.3725

  21. 5 m b = 2 . 92 , T/T c = 1 . 75 ˆ 4 . 5 Free lat. Υ Free lat. χ b 1 4 Υ χ b 1 3 . 5 Free cont. S -wave Free cont. P -wave 3 γ eff 2 . 5 2 1 . 5 1 0 . 5 0 0 2 4 6 8 10 12 14 τ/a τ

  22. 5 m b = 2 . 92 , T/T c = 1 . 75 ˆ 4 . 5 Free lat. Υ Free lat. χ b 1 4 Υ χ b 1 3 . 5 Free cont. S -wave Free cont. P -wave 3 γ eff 2 . 5 2 1 . 5 1 0 . 5 0 0 2 4 6 8 10 12 14 τ/a τ

  23. 5 m b = 2 . 92 , T/T c = 1 . 75 ˆ 4 . 5 Free lat. Υ Free lat. χ b 1 4 Υ χ b 1 3 . 5 Free cont. S -wave Free cont. P -wave 3 γ eff 2 . 5 2 1 . 5 1 0 . 5 0 0 2 4 6 8 10 12 14 τ/a τ

  24. 2.92 2 T/T c = 1 . 75 S -wave P -wave 1.5 Free cont. S -wave Free cont. P -wave 1 0.5 α 0 -0.5 -1 0 2 4 6 8 10 12 14 m b ˆ

  25. NRQCD • Radiatively improve NRQCD action with automated LPT. Finite temperature • Compare analysis of correlators with spectral functions from MaxEnt. New ensembles with ξ = 7 • Anisotropy tuning with Wilson flow.

  26. 0.1 m b = 2 . 92 ˆ Υ 0 -0.1 -0.2 α -0.3 -0.4 -0.5 -0.6 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 T c /T

  27. 1 m b = 2 . 92 ˆ Υ 0.8 χ b 1 0.6 0.4 0.2 α 0 -0.2 -0.4 -0.6 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 T c /T

  28. S ψ = a 3 � ψ † ( n ) [ ψ ( n ) − K ( n τ ) ψ ( n − a τ e τ )] s n ∈ Λ H 0 = − ∆ (2) 2 m b δH v 2 = − (∆ (2) ) 2 + ig 0 ( ∇ ± · E − E · ∇ ± ) 8 m 3 8 m 2 b b δH σ = − g 0 g 0 σ · ( ∇ ± × E − E × ∇ ± ) − 2 m b σ · B 8 m 2 b δH imp = a 2 24 m b − a τ (∆ (2) ) 2 s ∆ (4) 16 km 2 b ∆ (2) = ∆ (4) = � � ∇ + i ∇ − ( ∇ + i ∇ − i ) 2 where i , and i i

  29. [1] CMS Collaboration. Observation of sequential Υ suppression in PbPb collisions. Physical Review Letters , 109:222301, 2012, arXiv:1208.2826 . [2] R. Rapp, D. Blaschke, and P. Crochet. Charmonium and bottomonium in heavy-ion collisions. Progress in Particle and Nuclear Physics , 65:209, 2010, arXiv:0807.2470 . [3] Y. Burnier, M. Laine, and M. Veps¨ al¨ ainen. Heavy quarkonium in any channel in resummed hot QCD. Journal of High Energy Physics , 0801:043, 2008, arXiv:0711.1743 . [4] G. Aarts, S. Kim, M. P. Lombardo, M. B. Oktay, S. M. Ryan, D. K. Sinclair, and J.-I. Skullerud. Bottomonium above deconfinement in lattice nonrelativistic QCD. Physical Review Letters , 106:061602, 2011, arXiv:1010.3725 .

  30. m b = 2 . 92 ˆ 0.245 a τ E ( η b ) = 0 . 2059(2) + 0 . 0239(3) ˜ P 2 /a 2 s a τ E (Υ) = 0 . 2150(3) + 0 . 0241(3) ˜ P 2 /a 2 0.24 s 0.235 0.23 P ) 0.225 a τ E ( ˜ 0.22 0.215 0.21 0.205 0.2 0 0.2 0.4 0.6 0.8 1 1.2 ˜ P 2 /a 2 s

  31. 2.92 1.8 4 ( M kin ( η b ) + 3 M kin (Υ)) 1.7 1.6 1.5 1.4 a τ M kin = a τ 1.3 a τ M kin ( ˆ m b ) a τ M expt 1.2 a τ M kin = 0 . 5092(49) ˆ m b + 0 . 181(12) 1.1 2 2.2 2.4 2.6 2.8 3 m b ˆ

  32. N f = 2 pure gauge ∞ 2nd O (4) 1st 2nd Z 2 m s N f = 1 m s, tric reality crossover 2nd Z 2 1st m u,d ∞ m u,d,s = 0

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend