p fluxes and exotic branes
play

P fluxes and exotic branes Stefano Risoli University of Rome la - PowerPoint PPT Presentation

P fluxes and exotic branes Stefano Risoli University of Rome la Sapienza and INFN 18th November 2016 Oviedo V Postgraduate Meeting On Theoretical Physics Based on work with D. Lombardo and F. Riccioni and work with E. Bergshoeff, V.Penas and


  1. P fluxes and exotic branes Stefano Risoli University of Rome la Sapienza and INFN 18th November 2016 Oviedo V Postgraduate Meeting On Theoretical Physics Based on work with D. Lombardo and F. Riccioni and work with E. Bergshoeff, V.Penas and F. Riccioni

  2. My talk in brief... I focus on a particular class of non-geometric fluxes, so-called P fluxes, which belong to the (vector-spinor) 352 representation of the T-duality group SO(6,6) in D = 4 dimensions I derive how P fluxes transform under T-duality I discuss the role of P fluxes in a specific N = 1 orientifold model shedding light on what happens in type IIA theory I derive how P fluxes modify a class of type II Bianchi identities I discuss the interplay between P fluxes and exotic/non-geometric branes and tadpoles

  3. T-duality, fluxes and non-geometry T-duality is a symmetry between two string theories with compactified dimensions On a circle S 1 of radius R and coordinate X : The string moves along the circle with quantized momentum p = n / R ( n ∈ Z ) The string winds around the circle in units of 2 π R : ∆ X = 2 π Rm ( m ∈ Z ) T-duality : R → 1 / R and n ↔ m

  4. T-duality, fluxes and non-geometry R → 1 / R and n ↔ m T-duality relates IIA ↔ IIB string theories: NS-NS sectors: g µν , B µν , g ⋆µ , B ⋆µ , φ ↔ g µν , B µν , g ⋆µ , B ⋆µ , φ RR sectors: C ⋆ , C µ ↔ C 0 , C ⋆µ C ⋆µν , C µνρ ↔ C µν , C ⋆µνρ T-duality means that string theories with small and big radii are identified! classical notions of geometry break down (non-geometry) look for consistent exotic (non-geometric) backgrounds: globally/locally non-Riemannian

  5. T-duality, fluxes and non-geometry Generalization: On a torus T d (with non-vanishing g µν , B µν ) The fields can be embedded in a 2 d × 2 d matrix � g − 1 − g − 1 B � H = Bg − 1 g − bg − 1 b T-duality : H → O H O T , O ∈ O ( d , d ; Z ) In Supergravity (low-energy approximation of string theory) T-duality is global O ∈ O ( d , d ; R ) Crucial: T-duality mixes the metric g with the gauge field B in a non trivial way: we end up with a metric which is some complicated function of initial g and B (non-geometry)

  6. T-duality, fluxes and non-geometry Prototype of a non-geometric background: T-fold de Boer, Shigemori (2010) The NS5-brane is a solution of IIA/IIB supergravity, magnetically charged under B 2 0 1 2 3 4 5 6 7 8 9 NS5 − − − − − − KK5 − − − − − − � T-fold − − − − − − � � T 6 T 7 NS5 − → KK5 − → T-fold The T-fold turns out be globally non-geometric, geometrical well-defined only in D = 8, i.e. with isometries

  7. T-duality, fluxes and non-geometry In string theory fluxes are p -forms field strengths of gauge fields, with legs along the internal manifold, integrally quantized, e.g. � IIB NS-NS sector: B 2 → H 3 = dB 2 with H 3 = n ∈ Z � IIB RR sector: C 2 → F 3 = dC 2 with F 3 = m ∈ Z Fluxes play a crucial phenomenological role in 4D compactifications inducing a potential for the scalar fields (moduli stabilisation, dS vacua, inflation...) In N = 1, D = 4 supergravity the scalar potential is V = e K ( K i ¯ j D i WD ¯ j W − 3 | W | 2 ) K is the Kahler potential: depends on the scalars W is the superpotential: contains the fluxes

  8. T-duality, fluxes and non-geometry Non-geometric fluxes: sourced by non-geometric/exotic branes T j T i − → KK5 − → T-fold NS5 ⇓ T j T i → Q ij → f i − − parallel T-duality chain of fluxes: H ijk jk k From the point of view of supergravity, fluxes induce a gauging in the 4D low-energy effective action.The gauging is described in terms of the embedding tensor de Wit, Samtleben, Trigiante (2002) Maximal theory in D=4: embedding tensor in the 912 of E 7(7)

  9. NS and RR fluxes If we decompose the 912 under T-duality SO (6 , 6) ⊂ E 7(7) we end up with 912 = 32 ⊕ 220 ⊕ 352 ⊕ ... The 32 rep corresponds to the RR fluxes  F m F mnp F mnpq IIB  θ a → F F mn F mnpq F mnpqrs IIA  T m ...under T-duality: F n 1 ... n p − − → F mn 1 ... n p The 220 corresponds to the NS fluxes introduced before... f p Q np R mnp θ MNP → H mnp mn m T p T n T m → f p → Q np → R mnp ...under T-duality: H mnp − − − − − − mn m

  10. P fluxes P fluxes belong to the representation of the embedding tensor which is the 352 representation of SO (6 , 6) This is the vector-spinor (‘gravitino’) representation θ Ma By decomposing the whole representation under GL (6 , R ) one gets P m , n 1 n 2 P m , n 1 ... n 4 P m , n 1 ... n 6 P m P n 1 n 2 P n 1 ... n 4  IIA m m  θ Ma → P m , n P m , n 1 n 2 n 3 P m , n 1 ... n 5 P n m P n 1 n 2 n 3 P n 1 ... n 5 IIB  m m Bergshoeff, Penas, Riccioni, SR (2015) P m , n 1 ... n p belong to mixed symmetry representations (vanishing completely antisymmetric part)

  11. P fluxes and T-duality What happens to a given P flux under T-duality? We make use of the fact that P fluxes belong to a vector-spinor representation (hybrid between RR and NS) Prescription on the indices: in the P flux treat the m upstairs and downstairs indices as forming the vector index M , while the n indices form the spinor representation As a consequence, we derive the following T-duality rules T m P n 1 ... n p → P m , n 1 ... n p m − − m T np P n 1 ... n p → P n 1 ... n p − 1 − − m m T np P m , n 1 ... n p → P m , n 1 ... n p − 1 − − Lombardo, Riccioni, SR (2016)

  12. IIA/IIB orientifold models We consider T-duality and P fluxes (NS, RR) in a specific N = 1 model: IIA/IIB T 6 / ( Z 2 × Z 2 ) orientifold with O3 and O6-planes. Aldazabal, C´ amara, Font, Ib´ a˜ nez (2006) T 6 / ( Z 2 × Z 2 ): T 6 is factorized: T 6 = � 3 i =1 T 2 ( i ) each subtorus has coordinates ( x i , y i ) Basis of closed 2-forms: ω i = dx i ∧ dy i Kahler form: J = � i A i ω i Holomorphic 3-form: Ω = ( dx 1 + i τ 1 dy 1 ) ∧ ( dx 2 + i τ 2 dy 2 ) ∧ ( dx 3 + i τ 3 dy 3 )

  13. IIB/O3 IIB/O3: IIB modded out by Ω P ( − 1) F L σ B where σ B ( x i ) = − x i σ B ( y i ) = − y i 7 complex moduli ( U i , T i , S ): complex structure moduli U i = τ i complex Kahler moduli T i J c = C 4 + i 2 e − φ J ∧ J = i � i T i ˜ ω i axion-dilaton S = e − φ + iC 0

  14. IIA/O6 IIA/O6 obtained from IIB/O3 by performing three T-dualities along x 1 , x 2 , x 3 Involution is now σ A ( x i ) = x i σ A ( y i ) = − y i Complex scalars embedded in: Complexified holomorphic 3-form is Ω c = C 3 + i Re ( C Ω) = iS ( dx 1 ∧ dx 2 ∧ dx 3 ) + iU i ( dx ∧ dy ∧ dy ) i Complex Kahler moduli are J c = B + iJ = i � i T i ω i IIB and IIA moduli related by T-duality as T i ↔ U i

  15. Allowed RR fluxes IIB RR fluxes IIA RR fluxes F x 1 x 2 x 3 F F y i x j x k F x i y i F x i y j y k F x j y j x k y k F y 1 y 2 y 3 F x 1 y 1 x 2 y 2 x 3 y 3 IIB/O3: only F 3 turned on IIA/O6: F , F 2 , F 4 , F 6

  16. Allowed NS fluxes IIB NS fluxes IIA NS fluxes R x 1 x 2 x 3 H x 1 x 2 x 3 − Q x j x k H y i x j x k y i − f x i H x i y j y k y j y k H y i y j y k H y i y j y k Q x j x k f x i x i x j x k Q x k y i f y i y j y j x k Q x j x k − H y i x j x k y i Q x i y k Q y k x j x j x i Q y j y k R x i y k y j x i Q y j y k Q y j y k y i y i

  17. IIA/IIB superpotentials In IIB/O3 H 3 and F 3 turned on determine the superpotential � W B = ( F 3 − iSH 3 ) ∧ Ω Gukov, Vafa, Witten (2001) with all NS fluxes turned on, generalises to: � W B = ( F 3 − iSH 3 + Q · J c ) ∧ Ω Shelton, Taylor, Wecht (2005) = P 1 ( U ) + SP 2 ( U ) + TP 3 ( U ) The IIA/O6 superpotential is [ e J c ∧ F RR + Ω c ∧ ( H 3 + fJ c + QJ (2) + RJ (3) � W A = c )] c which has the form W A = P 1 ( T ) + SP 2 ( T ) + UP 3 ( T ) Consistently, W A and W B match under T-duality ( U ↔ T )

  18. IIA/IIB superpotentials with P fluxes In IIB/O3 the P flux P np m has been already introduced as the S-dual of Q np m Aldazabal, C´ amara, Font, Ib´ a˜ nez (2005) By requiring that the superpotential transforms properly under S-duality, one obtains � [( F 3 − iSH 3 ) + ( Q − iSP ) J c ] ∧ Ω W B = which adds a new ST term W B = P 1 ( U ) + SP 2 ( U ) + TP 3 ( U ) + STP 4 ( U ) We now use T-duality rules to find all possible P fluxes, to find W A in a covariant form (for this particular model) and to generalise W B to all P fluxes

  19. P fluxes in IIA/IIB orientifolds (Part of) IIA P fluxes found performing 3 T-dualities from IIB to IIA along the three x directions IIB P fluxes IIA P fluxes P x k x j P x i y i y i P y j x k P x i x j y j y i y i P y j y k P x i x j x k y j y k y i y i P x k x j P x i , x i x i P y j x k P x i , x i x j y j x i P y j y k P x i , x i x j x k y j y k x i Not the whole story... according to the symmetries: P x i , x i ⇒ P y i , y i , y i ⇒ P y i x i , P x i , x i x j y j ⇒ P y i , y i x j y j , and so on ... P x i

  20. IIB P fluxes IIA P fluxes P x k x j P x i y i y i P y j x k P x i x j y j y i y i P y j y k P x i x j x k y j y k y i y i P x k x j P x i , x i x i P y j x k P x i , x i x j y j x i P y j y k P x i , x i x j x k y j y k x i P y i P x i , x i x j x k y i x i P y i x k y k P x i , x i x j y i y k x i P y i x j y j x k y k P x i , x i y i y j y k x i P y i , x i x j x k y i P y i , y i P y i , y i x i y j x k P y i , y i x j y j P y i , y i y j y k x i P y i , y i x j x k y j y k

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend