bootstrapping the 3d ising model
play

Bootstrapping the 3D Ising Model David Simmons-Duffin IAS Strings - PowerPoint PPT Presentation

Bootstrapping the 3D Ising Model David Simmons-Duffin IAS Strings 2014 with S. El-Showk, M. Paulos, F. Kos, D. Poland, S. Rychkov, A. Vichi The Conformal Bootstrap Polyakov 70: classify/solve CFTs using: conformal symmetry unitarity


  1. Bootstrapping the 3D Ising Model David Simmons-Duffin IAS Strings 2014 with S. El-Showk, M. Paulos, F. Kos, D. Poland, S. Rychkov, A. Vichi

  2. The Conformal Bootstrap Polyakov ’70: classify/solve CFTs using: • conformal symmetry • unitarity • associativity of the OPE Progress in d = 2 throughout 80’s and 90’s. Huge revival for d > 2 a few years ago...

  3. CFT Review • Local operators O 1 ( x ) , O 2 ( x ) , ... • Scaling dimensions �O i ( x ) O i ( y ) � = | x − y | − 2∆ i • Operator Product Expansion (OPE) � f ijk x ∆ k − ∆ i − ∆ j ( O k (0) + . . . ) O i ( x ) O j (0) = k i = ∑ j k k • Unitarity: ∆ i bounded from below, f ijk are real

  4. Bootstrap Revival • φ ( x ) : a real scalar primary operator. • It has the OPE � f φφ O x ∆ O − 2∆ φ ( O (0) + . . . ) φ ( x ) φ (0) = O Rattazzi, Rychkov, Tonni, Vichi ’08 : Bootstrap constraints on � φφφφ � imply universal bounds on • OPE coefficients f φφ O • Dimensions, spins ∆ O , ℓ O

  5. Conformal Blocks & Crossing Symmetry 1 4 ❆❆ ✁✁ � O � φ ( x 1 ) φ ( x 2 ) φ ( x 3 ) φ ( x 4 ) � = ✁✁ ❆❆ O 2 3 Crossing Symmetry � � 1 4 1 4 ❍ ✟ ❍ ✟ ❆❆ ✁✁ � O − = 0 O ✁✁ ❆❆ ✟❍ ✟ ❍ O 2 3 2 3 � � � f 2 v ∆ φ g ∆ ,ℓ ( u, v ) − u ∆ φ g ∆ ,ℓ ( v, u ) = 0 φφ O O � �� � F ∆ ,ℓ ( u, v )

  6. Bounds from Crossing Symmetry � f 2 0 = F 0 , 0 ( u, v ) + φφ O F ∆ ,ℓ ( u, v ) O • Make an assumption about spectrum of ∆ , ℓ ’s. • Try to find a linear functional α such that α ( F 0 , 0 ) > 0 α ( F ∆ ,ℓ ) ≥ 0 (convex optimization problem) • If α exists, assumption is ruled out.

  7. Outline 1 Bounds in 3d CFTs 2 Mixed Correlators 3 Future Directions

  8. Outline 1 Bounds in 3d CFTs 2 Mixed Correlators 3 Future Directions

  9. Universal Bound in 3d CFTs [El-Showk, Paulos, Poland, Rychkov, DSD, Vichi ’12] � Ε 1.8 � 78 comp. � 3d Ising ? 1.6 1.4 1.2 0.64 � Σ 1.0 0.50 0.52 0.54 0.56 0.58 0.60 0.62 • ǫ ≡ lowest dimension scalar in σ × σ • Assumes only bootstrap constraints for � σσσσ �

  10. 3d O ( N ) Vector Models [Kos, Poland, DSD ’13] ∆ | φ | 2 O (20) 2 . 2 O (10) 2 O (6) 1 . 8 O (4) 1 . 6 O (2) Ising 1 . 4 1 . 2 ∆ φ 1 5 0 . 5 0 . 51 0 . 52 0 . 53

  11. Fractional Spacetime Dimensions [El-Showk, Paulos, Poland, Rychkov, DSD, Vichi ’13] γ σ ≡ ∆ σ − d − 2 γ ǫ ≡ ∆ ǫ − ( d − 2) vs. 2 2 1.0 2.25 0.8 2.5 0.6 2.75 Γ Ε 3 0.4 3.25 3.5 0.2 Γ Ε � 2 Γ Σ 3.7 3.8 3.9 0.0 4 0.00 0.02 0.04 0.06 0.08 0.10 0.12 Γ Σ

  12. c -Minimization • Perhaps � σσσσ � in 3d Ising lies on the boundary of the space of unitary, crossing-symmetric 4-pt functions. Natural conjecture: Ising minimizes c ∝ � T µν T ρσ � [El-Showk, Paulos, Poland, Rychkov, DSD, Vichi ’14] C T � C T free 1.25 1.20 1.15 1.10 1.05 1.00 0.95 0.60 � Σ 0.50 0.52 0.54 0.56 0.58

  13. c at High Precision c lower bound (153,190,231 comp.) 0.9473 0.94660 0.9472 0.9471 0.94655 0.9470 c/c free 0.9469 0.9468 0.51815 0.51820 0.9467 0.9466 0.9465 0.5179 0.5180 0.5181 0.5182 0.5183 0.5184 0.5185 ∆( σ )

  14. Spectrum from c -Minimization [El-Showk, Paulos, Poland, Rychkov, DSD, Vichi ’14] year Method ν η ω 1998 ǫ -exp 0.63050(250) 0.03650(500) 0.814(18) 1998 3D exp 0.63040(130) 0.03350(250) 0.799(11) 2002 HT 0.63012(16) 0.03639(15) 0.825(50) 2003 MC 0.63020(12) 0.03680(20) 0.821(5) 2010 MC 0.63002(10) 0.03627(10) 0.832(6) c -min 0.62999(5) 0.03631(3) 0.8303(18) Critical exponents: ∆ ǫ ′ = 3 + ω . ∆ σ = 1 / 2 + η/ 2 , ∆ ǫ = 3 − 1 /ν,

  15. Outline 1 Bounds in 3d CFTs 2 Mixed Correlators 3 Future Directions

  16. Mixed Correlators [Kos, Poland, DSD ’14] • So far, bootstrap studies have focused on 4-pt function of identical operators � φφφφ � . • Full bootstrap requires crossing-symmetry & unitarity for all 4-pt functions. • Mixed correlator: � σσǫǫ � in 3d Ising. • Consequences of unitarity are trickier: � � σσǫǫ � = f σσ O f ǫǫ O g ∆ ,ℓ ( u, v ) O f σσ O f ǫǫ O not necessarily positive.

  17. Positivity for Mixed Correlators • Consider � σσσσ � , � σσǫǫ � , � ǫǫǫǫ � together. Crossing symmetry says: � � � F (1 , 1) ∆ ,ℓ ( u, v ) F (1 , 2) � ∆ ,ℓ ( u, v ) f σσ O � � f σσ O f ǫǫ O � F (2 , 1) ∆ ,ℓ ( u, v ) F (2 , 2) f ǫǫ O ∆ ,ℓ ( u, v ) O + · · · = 0 • Look for functionals α : F ( u, v ) → R such that � � α ( F (1 , 1) ∆ ,ℓ ) α ( F (1 , 2) ∆ ,ℓ ) � 0 α ( F (2 , 1) ∆ ,ℓ ) α ( F (2 , 2) ∆ ,ℓ ) is positive semidefinite. Analog of α ( F ∆ ,ℓ ) ≥ 0 .

  18. Mixed Correlator Bound for CFT 3 w/ Z 2 ∆ ǫ 1 . 6 1 . 4135 1 . 4 1 . 4125 1 . 2 1 . 4115 0 . 5181 0 . 5182 0 . 5183 ∆ σ 1 0 . 5 0 . 52 0 . 54 0 . 56 0 . 58 0 . 6 • Monte-Carlo, c -min conjecture, rigorous bound • Assuming σ, ǫ are only relevant scalars.

  19. Outline 1 Bounds in 3d CFTs 2 Mixed Correlators 3 Future Directions

  20. Future Directions • Improve optimization algorithms/precision • Find more boundary-dwelling CFTs ( [3d, 5d: Nakayama, Ohtsuki] [4d N = 2 , 4 , 6d N = (2 , 0) : Beem, Lemos, Liendo, Peelaers, Rastelli, van Rees] [4d N = 4 Alday, Bissi] [3d N = 8 : Chester, Lee, Pufu, Yacoby] ) • Mixed correlators in other theories • Four-point functions of operators with spin (stress tensor, symmetry currents) • Nonlocal operators [Liendo, Rastelli, van Rees ’12] [Gaiotto, Mazac, Paulos ’13] • Analytic results, new consistency conditions

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend