height representation of xor ising loops via bipartite
play

Height representation of XOR-Ising loops via bipartite dimers C - PowerPoint PPT Presentation

Height representation of XOR-Ising loops via bipartite dimers C edric Boutillier (UPMC) B eatrice de Tili` ere (UPMC) LAGA Universit e Paris Nord March 11, 2015 The Ising model and the XOR-Ising model The Ising model Let G =


  1. Height representation of XOR-Ising loops via bipartite dimers C´ edric Boutillier (UPMC) B´ eatrice de Tili` ere (UPMC) LAGA Universit´ e Paris Nord – March 11, 2015

  2. The Ising model and the XOR-Ising model

  3. The Ising model ◮ Let G = ( V , E ) be a finite graph embedded in the plane ◮ spin configuration σ : V − → {− 1 , +1 } ◮ σ assigns to every vertex x a spin σ x ∈ {− , + } +1 / − 1 are represented by green/blue dots.

  4. The Ising model ◮ Edges of G are assigned positive coupling constants : J = ( J e ) e ∈ E . ◮ Ising Boltzmann measure :   1  � ∀ σ ∈ {− 1 , 1 } V ,  , P Ising ( σ ) = Z Ising ( G , J ) exp J xy σ x σ y e = xy ∈ E   �  �  is the where Z Ising ( G , J ) = exp J xy σ x σ y σ ∈{− 1 , 1 } V e = xy ∈ E Ising partition function .

  5. The XOR-Ising model Ising model on G , J = ( Je ) e ∈ E Ising model on G , J = ( Je ) e ∈ E σ ′ σ × = × = × = ξ = σσ ′ × = XOR-Ising model on G , J = ( Je ) e ∈ E

  6. The XOR-Ising model Ising model on G , J = ( Je ) e ∈ E Ising model on G , J = ( Je ) e ∈ E σ ′ σ × = × = × = ξ = σσ ′ × = XOR-Ising model on G , J = ( Je ) e ∈ E

  7. Conjecture for the XOR-Ising model Conjecture (Wilson (11), Ikhlef–Picco–Santachiara) The scaling limit of polygon configurations separating ± 1 clusters of the critical XOR-Ising model are contour lines of the Gaussian √ free field, with the heights of the contours spaced 2 times as far apart as they are for [...] the double dimer model on the square lattice.

  8. Result Theorem (B–dT) ◮ Polygon configurations of the XOR-Ising model have the same law as a family of contours in a bipartite dimer model. ◮ This family of contours are the level lines of a restriction of the height function of this bipartite dimer model. Remark Proved when the graph G is embedded in a surface of genus g , or when G is planar, infinite. ◮ When the XOR-Ising model is critical , so is the bipartite dimer model. ◮ Using results of [dT] on the convergence of the height function, this gives partial proof of Wilson’s conjecture.

  9. Contour expansion of the Ising partition function [Kramers & Wannier]

  10. Low temperature expansion ◮ Polygon configuration : subset of edges s.t. each vertex is incident to an even number of edges. e J e σ x σ y = e J e ( δ { σ x = σ y } + e − 2 J e δ { σ x � = σ y } ) . ◮ Write The partition function is then equal to (LTE) : e J e σ x σ y = C � � � � e − 2 J e . Z Ising ( G , J ) = P ∗ ∈ P ( G ∗ ) e ∗ ∈ P ∗ σ ∈{− 1 , 1 } V e = xy ∈ E ◮ Geometric interp: polygon config. separate clusters of ± 1 spins.

  11. High temperature expansion e J e σ x σ y = cosh( J e )(1 + σ x σ y tanh( J e )) . ◮ Write, The partition function is then equal to (HTE) : e J e σ x σ y = C ′ � � � � Z Ising ( G , J ) = tanh( J e ) . σ ∈{− 1 , 1 } V e = xy ∈ E P ∈ P ( G ) e ∈ P ◮ No geometric interpretation using spin configurations.

  12. Mixed contour expansion for the double Ising model

  13. The double Ising model ◮ Take 2 independent copies (red/blue) of an Ising model on G, with coupling constants J . ◮ Using the LTE, consider the probability measure P 2 - Ising : if P ∗ , P ∗ are two polygon configurations. C 2 � � e ∗ ∈ P ∗ e − 2 J e �� � e ∗ ∈ P ∗ e − 2 J e � P 2 - Ising ( P ∗ , P ∗ ) = , Z 2 - Ising ( G , J ) where Z 2 - Ising ( G , J ) = Z Ising ( G , J ) 2 .

  14. The double Ising model ◮ Let P ∗ , P ∗ be two polygon configurations. ◮ Consider the superimposition P ∗ ∪ P ∗ . ◮ Define two new edge configurations: ◮ Mono( P ∗ , P ∗ ) : monochromatic edges. ◮ Bi( P ∗ , P ∗ ) : bichromatic edges.

  15. Monochromatic edges Monochromatic edge configuration of P ∗ ∪ P ∗ Lemma Mono( P ∗ , P ∗ ) is the polygon configuration separating ± 1 clusters of the corresponding XOR-Ising spin configuration. Goal: understand the law of monochromatic edge configurations.

  16. Bichromatic edge configurations ◮ Let ( P ∗ , P ∗ ) be two polygon configurations. ◮ Mono( P ∗ , P ∗ ) splits the surface into connected comp. (Σ i ) i . Σ 9 Σ 8 Σ 1 Σ 2 Σ 3 Σ 7 Σ 6 Σ 4 Σ 5 Lemma For every i , the restriction of Bi( P ∗ , P ∗ ) to Σ i is the LTE of an Ising configuration on G Σ i , with coupling constants (2 J e ) .

  17. Probability of monochromatic configurations Lemma Let P ∗ be a polygon configuration, separating the surface into n connected components. For every i , let P ∗ i be a polygon configuration of G ∗ Σ i . Then, there are 2 n pairs of polygon configurations ( P ∗ , P ∗ ) having P ∗ as monochromatic edges, and P ∗ 1 , · · · , P ∗ n as bichromatic edges. Denote by W ( P ∗ ) the contribution to Z 2 - Ising ( G , J ) of the pairs of polygon configurations ( P ∗ , P ∗ ) such that Mono( P ∗ , P ∗ ) = P ∗ . Corollary � � e ∗ ∈ P ∗ e − 2 J e � � n ◮ W ( P ∗ ) = C �� 2 Z LT ( G ∗ Σ i , 2 J ) i =1 ◮ Z 2 - Ising ( G , J ) = � P ∗ ∈ P ( G ∗ ) W ( P ∗ ) W ( P ∗ ) P 2 - Ising (Mono = P ∗ ) = Z 2 - Ising ( G ,J ) .

  18. Mixed contour expansion � � W ( P ∗ ) = C e ∗ ∈ P ∗ e − 2 J e � � n 2 Z LT ( G ∗ �� Σ i , 2 J ) . i =1 Idea [Nienhuis]: high temperature expansion in each connected component Σ i . Z LT ( G ∗ Σ i , 2 J ) = C (Σ i ) Z HT ( G Σ i , 2 J ) . Low temp. expansion on G ∗ High temp. expansion on G Σ i . Σ i

  19. Mixed contour expansion Proposition For every polygon configuration P ∗ , � 2 e − 2 J e � 1 − e − 4 J e � � � � � W ( P ∗ ) = C 1 + e − 4 J e 1 + e − 4 J e e ∗ ∈ P ∗ { P ∈ P ( G ): P ∗ ∩ P = ∅} e ∈ P 2 e − 2 Je 1 − e − 4 Je � � � � � � � 1+ e − 4 Je 1+ e − 4 Je e ∗∈ P ∗ { P ∈ P ( G ): P ∗∩ P = ∅} e ∈ P P 2 - Ising (Mono = P ∗ ) = � ··· P ∗∈ P ( G ∗ )

  20. Higher genus If the graph is embedded in a surface Σ of genus g ≥ 0 . ◮ Consider H 1 (Σ , Z / 2 Z ) ≃ { 0 , 1 } 2 g . ◮ Family of Ising models, indexed by ε ∈ { 0 , 1 } 2 g . ◮ The double Ising model partition function is defined as: � Ising ( G , J ) 2 . Z ε Z 2 - Ising ( G , J ) = ε ∈{ 0 , 1 } 2 g

  21. From mixed polygon configurations to dimers

  22. The graph G Q = ( V Q , E Q )

  23. The dimer model on G Q dimer configuration of G Q : a subset of edges M such that each vertex is incident to exactly on edge of M

  24. The dimer model on G Q dimer configuration of G Q : a subset of edges M such that each vertex is incident to exactly on edge of M

  25. The dimer model on G Q dimer configuration of G Q : a subset of edges M such that each vertex is incident to exactly on edge of M weight function ν on the edges Dimer Boltzmann measure : P dimer ( M ) ∝ � e ∈ E Q ν e

  26. First step: from polygons to 6-vertex [Nienhuis] 1 2 3 4 5 6 Local mapping 1 2 3 4 5 6 1+ e − 4 Je , ω 34 = 1 − e − 4 Je 2 e − 2 Je Weights: ω 12 = 1+ e − 4 Je , ω 56 = 1 .

  27. First step: from polygons to 6-vertex [Nienhuis] 1 2 3 4 5 6 Local mapping 1 2 3 4 5 6 1+ e − 4 Je , ω 34 = 1 − e − 4 Je 2 e − 2 Je Weights: ω 12 = 1+ e − 4 Je , ω 56 = 1 .

  28. Second step: from 6V to dimers [Wu-Lin, Dub´ edat] 1 1 ω ω ω ω 12 12 34 34 1 ω 12 1 Local mapping ω 34 ω 1 2 3 4 5 6 34 ω 1 1 12 ω 12 ω 12 ω 34 ω 34 1 2 2 ω 12 + ω = 1 34

  29. Conclusion ◮ To every dimer configuration M of G Q , assign Poly( M ) = (Poly 1 ( M ) , Poly 2 ( M )) , the pair of polygon configurations given by the mappings. Theorem For every polygon configuration P ∗ of G ∗ , P 2 - Ising (Mono = P ∗ ) = P dimer (Poly 1 = P ∗ )

  30. Height function for bipartite dimers (Thurston)

  31. Height function for bipartite dimers (Thurston) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  32. Height function for bipartite dimers (Thurston) 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 0 0 1 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend