black hole attractors and superconformal quantum mechanics
play

Black Hole Attractors and Superconformal Quantum Mechanics Davide - PowerPoint PPT Presentation

Black Hole Attractors and Superconformal Quantum Mechanics Davide Gaiotto dgaiotto@fas.harvard.edu Harvard University joint work with Aaron Simons, Andrew Strominger, Xi Yin hep-th/ 0412322 hep-th/ 0412179 Black Hole Attractors and


  1. Black Hole Attractors and Superconformal Quantum Mechanics Davide Gaiotto dgaiotto@fas.harvard.edu Harvard University joint work with Aaron Simons, Andrew Strominger, Xi Yin hep-th/ 0412322 hep-th/ 0412179 Black Hole Attractors and Superconformal Quantum Mechanics – p.

  2. Contents • Brief review: • BPS black holes in N = 2 supergravity • Near horizon geometry: attractor mechanism Black Hole Attractors and Superconformal Quantum Mechanics – p.

  3. Contents • Brief review: • BPS black holes in N = 2 supergravity • Near horizon geometry: attractor mechanism • D 0 -brane probes in near horizon geometry • Superconformal Quantum Mechanics • Short multiplets Black Hole Attractors and Superconformal Quantum Mechanics – p.

  4. Contents • Brief review: • BPS black holes in N = 2 supergravity • Near horizon geometry: attractor mechanism • D 0 -brane probes in near horizon geometry • Superconformal Quantum Mechanics • Short multiplets • BH entropy from D 2 -brane wrapping horizon. Black Hole Attractors and Superconformal Quantum Mechanics – p.

  5. N = 2 SUGRA • IIA (IIB) on Calabi Yau threefold Black Hole Attractors and Superconformal Quantum Mechanics – p.

  6. N = 2 SUGRA • IIA (IIB) on Calabi Yau threefold • gravitational multiplet g µν , ψ µ , A µ • n = h 1 , 1 vector multiplets A i µ , λ i , z i • h 2 , 1 + 1 hypermultiplets Black Hole Attractors and Superconformal Quantum Mechanics – p.

  7. N = 2 SUGRA • IIA (IIB) on Calabi Yau threefold • gravitational multiplet g µν , ψ µ , A µ • n = h 1 , 1 vector multiplets A i µ , λ i , z i • h 2 , 1 + 1 hypermultiplets Black Hole Attractors and Superconformal Quantum Mechanics – p.

  8. N = 2 SUGRA • IIA (IIB) on Calabi Yau threefold • gravitational multiplet g µν , ψ µ , A µ • n = h 1 , 1 vector multiplets A i µ , λ i , z i • h 2 , 1 + 1 hypermultiplets � F A � � X A • Sp (2 n + 2) symmetry: � G A F A Black Hole Attractors and Superconformal Quantum Mechanics – p.

  9. N = 2 SUGRA • IIA (IIB) on Calabi Yau threefold • gravitational multiplet g µν , ψ µ , A µ • n = h 1 , 1 vector multiplets A i µ , λ i , z i • h 2 , 1 + 1 hypermultiplets � F A � � X A • Sp (2 n + 2) symmetry: � G A F A • z i = X i X 0 Black Hole Attractors and Superconformal Quantum Mechanics – p.

  10. N = 2 SUGRA • IIA (IIB) on Calabi Yau threefold • gravitational multiplet g µν , ψ µ , A µ • n = h 1 , 1 vector multiplets A i µ , λ i , z i • h 2 , 1 + 1 hypermultiplets � F A � � X A • Sp (2 n + 2) symmetry: � G A F A • z i = X i X 0 � � D abc X a X b X c • F A = ∂ A F = ∂ A + · · · X 0 Black Hole Attractors and Superconformal Quantum Mechanics – p.

  11. BPS Black Holes • Graviphoton: X A G A − F A F A p A F A − q A X A � � � • Mass: Z ∞ = � ∞ Black Hole Attractors and Superconformal Quantum Mechanics – p.

  12. BPS Black Holes • Graviphoton: X A G A − F A F A p A F A − q A X A � � � • Mass: Z ∞ = � ∞ • Depends on moduli at infinity. Black Hole Attractors and Superconformal Quantum Mechanics – p.

  13. BPS Black Holes • Graviphoton: X A G A − F A F A p A F A − q A X A � � � • Mass: Z ∞ = � ∞ • Depends on moduli at infinity. • Dependence is forgotten near the horizon • X A ( r ) → X A fixed ( p A , q A ) r → 0 as • Scalars flow to an attractor point Black Hole Attractors and Superconformal Quantum Mechanics – p.

  14. BPS Black Holes • X A fixed extremizes | Z | = | p A F A − q A X A | • Re CX A fixed = p A Re CF A fixed = q A Black Hole Attractors and Superconformal Quantum Mechanics – p.

  15. BPS Black Holes • X A fixed extremizes | Z | = | p A F A − q A X A | • Re CX A fixed = p A Re CF A fixed = q A • S BH ( p, q ) = π | Z | 2 fixed • exp S BH ( p, q ) ≃ Number of microstates of black hole Black Hole Attractors and Superconformal Quantum Mechanics – p.

  16. Entropy from microstates � p A � • Charges from D-branes in Calabi-Yau q A ( p 0 , p a , q a , q 0 ) ( D 6 , D 4 , D 2 , D 0) Black Hole Attractors and Superconformal Quantum Mechanics – p.

  17. Entropy from microstates � p A � • Charges from D-branes in Calabi-Yau q A ( p 0 , p a , q a , q 0 ) ( D 6 , D 4 , D 2 , D 0) • Counting of bound states of D 4 , D 2 , D 0 • S BH ( p, q ) ≃ 2 π √ D ˜ q 0 q 0 = q 0 + 1 • D = D abc p a p b p c 12 D ab q a q b ˜ Black Hole Attractors and Superconformal Quantum Mechanics – p.

  18. Entropy from microstates � p A � • Charges from D-branes in Calabi-Yau q A ( p 0 , p a , q a , q 0 ) ( D 6 , D 4 , D 2 , D 0) • Counting of bound states of D 4 , D 2 , D 0 • S BH ( p, q ) ≃ 2 π √ D ˜ q 0 q 0 = q 0 + 1 • D = D abc p a p b p c 12 D ab q a q b ˜ • Different computations: M-theory, others. 1 • � (1 − x n ) 6 D Black Hole Attractors and Superconformal Quantum Mechanics – p.

  19. Probing near the horizon • Bertotti-Robinson AdS 2 × S 2 × CY | fixed • Maximal supersymmetry: 8 supercharges Black Hole Attractors and Superconformal Quantum Mechanics – p.

  20. Probing near the horizon • Bertotti-Robinson AdS 2 × S 2 × CY | fixed • Maximal supersymmetry: 8 supercharges • D-branes can be BPS for generic charges • Same SUSY preserved by charges ( u, v ) u A q A − v A p A > 0 • Many ways to probe near horizon geometry. Black Hole Attractors and Superconformal Quantum Mechanics – p.

  21. Probing near the horizon • Bertotti-Robinson AdS 2 × S 2 × CY | fixed • Maximal supersymmetry: 8 supercharges • D-branes can be BPS for generic charges • Same SUSY preserved by charges ( u, v ) u A q A − v A p A > 0 • Many ways to probe near horizon geometry. Black Hole Attractors and Superconformal Quantum Mechanics – p.

  22. Plan Superconformal QM of probe D-branes Black Hole Attractors and Superconformal Quantum Mechanics – p.

  23. Plan Superconformal QM of probe D-branes • Black Hole Entropy: • microstates as bound states in near-horizon geometry Black Hole Attractors and Superconformal Quantum Mechanics – p.

  24. Plan Superconformal QM of probe D-branes • Black Hole Entropy: • microstates as bound states in near-horizon geometry • AdS 2 /CFT 1 correspondence: • Superconformal Matrix Quantum Mechanics? Black Hole Attractors and Superconformal Quantum Mechanics – p.

  25. D 0 branes in AdS 2 × S 2 × CY • Action in Poincare coordinates Black Hole Attractors and Superconformal Quantum Mechanics – p.

  26. D 0 branes in AdS 2 × S 2 × CY • Action in Poincare coordinates � � • − m R 2 θ 2 +sin 2 θ ˙ d t y µ ˙ σ 2 ) − R 2 ( ˙ y ν φ 2 ) − 2 g µν ˙ σ 2 (1 − ˙ Black Hole Attractors and Superconformal Quantum Mechanics – p.

  27. D 0 branes in AdS 2 × S 2 × CY • Action in Poincare coordinates � � • − m R 2 θ 2 +sin 2 θ ˙ d t y µ ˙ σ 2 ) − R 2 ( ˙ y ν φ 2 ) − 2 g µν ˙ σ 2 (1 − ˙ � � d t • q e R σ + q m R d φ cos θ Black Hole Attractors and Superconformal Quantum Mechanics – p.

  28. D 0 branes in AdS 2 × S 2 × CY • Action in Poincare coordinates � � • − m R 2 θ 2 +sin 2 θ ˙ d t y µ ˙ σ 2 ) − R 2 ( ˙ y ν φ 2 ) − 2 g µν ˙ σ 2 (1 − ˙ � � d t • q e R σ + q m R d φ cos θ � u A � � u A F A − v A X A � � • Charges m = � v A • q m = p A v A − q A u A q 2 e + q 2 m = m 2 Black Hole Attractors and Superconformal Quantum Mechanics – p.

  29. Hamiltonian • Hamiltonian to quadratic order ( σ = ξ 2 ) 8 mR ˆ ξ 2 ˆ ξ 2 ˆ 1 1 1 P 2 L 2 ξ + S 2 + ∆ CY • 2 mR ˆ 2 mR ˆ Black Hole Attractors and Superconformal Quantum Mechanics – p. 10

  30. Hamiltonian • Hamiltonian to quadratic order ( σ = ξ 2 ) 8 mR ˆ ξ 2 ˆ ξ 2 ˆ 1 1 1 P 2 L 2 ξ + S 2 + ∆ CY • 2 mR ˆ 2 mR ˆ • N = 4 superconformal symmetry SU (1 , 1 | 2) • ˆ 2 { ˆ ξ, ˆ K = 2 mR ˆ ˆ D = 1 ξ 2 P ξ } Black Hole Attractors and Superconformal Quantum Mechanics – p. 10

  31. Hamiltonian • Hamiltonian to quadratic order ( σ = ξ 2 ) 8 mR ˆ ξ 2 ˆ ξ 2 ˆ 1 1 1 P 2 L 2 ξ + S 2 + ∆ CY • 2 mR ˆ 2 mR ˆ • N = 4 superconformal symmetry SU (1 , 1 | 2) • ˆ 2 { ˆ ξ, ˆ K = 2 mR ˆ ˆ D = 1 ξ 2 P ξ } • SU (2) R-symmetry ˆ = ˆ i + ˆ L spin L S 2 L tot i i • ˆ αβ = ˆ L tot L tot i σ i αβ Black Hole Attractors and Superconformal Quantum Mechanics – p. 10

  32. Fermions • Fermionic partners: D 0 brane has 16 in 10 d spinor Θ u + ¯ • Θ = λ α u + η a η ¯ a α Γ a u + ¯ α Γ ¯ a ¯ λ α ¯ u Black Hole Attractors and Superconformal Quantum Mechanics – p. 11

  33. Fermions • Fermionic partners: D 0 brane has 16 in 10 d spinor Θ u + ¯ • Θ = λ α u + η a η ¯ a α Γ a u + ¯ α Γ ¯ a ¯ λ α ¯ u partners of ξ, ˆ � λ α • 4 goldstinos λ A � α = L S 2 (3 , 4 , 1) ¯ λ α Black Hole Attractors and Superconformal Quantum Mechanics – p. 11

  34. Fermions • Fermionic partners: D 0 brane has 16 in 10 d spinor Θ u + ¯ • Θ = λ α u + η a η ¯ a α Γ a u + ¯ α Γ ¯ a ¯ λ α ¯ u partners of ξ, ˆ � λ α • 4 goldstinos λ A � α = L S 2 (3 , 4 , 1) ¯ λ α • { λ A α , λ B β } = 2 ǫ AB ǫ αβ Black Hole Attractors and Superconformal Quantum Mechanics – p. 11

  35. Fermions on CY • 12 η a η ¯ y ¯ α partners of y a , ¯ a a α , ¯ 3(2 , 4 , 2) Black Hole Attractors and Superconformal Quantum Mechanics – p. 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend