categorical relativistic quantum theory
play

Categorical relativistic quantum theory Chris Heunen Pau Enrique - PowerPoint PPT Presentation

Categorical relativistic quantum theory Chris Heunen Pau Enrique Moliner Sean Tull 1 / 15 Idea Hilbert modules: naive quantum field theory Idempotent subunits: base space in any category Support: where morphisms live Causal


  1. Categorical relativistic quantum theory Chris Heunen Pau Enrique Moliner Sean Tull 1 / 15

  2. Idea ◮ Hilbert modules: naive quantum field theory ◮ Idempotent subunits: base space in any category ◮ Support: where morphisms live ◮ Causal structures: relativistic quantum information 2 / 15

  3. Base space Let X be locally compact Hausdorff space. C 0 ( X ) = { f : X → C cts | ∀ ε > 0 ∃ K ⊆ X cpt: f ( X \ K ) < ε } C f ε X K C b ( X ) = { f : X → C cts | ∃� f � < ∞ ∀ t ∈ X : | f ( t ) | ≤ � f �} 3 / 15

  4. Hilbert spaces C -module H with complete C -valued inner product tensor product over C monoidal category tensor unit C tensor unit I complex numbers C scalars I → I finite dimensional dual objects adjoints dagger orthonormal basis commutative dagger Frobenius structure fin-dim C*-algebra dagger Frobenius structure 4 / 15

  5. Hilbert modules C 0 ( X )-module H with complete C 0 ( X )-valued inner product tensor product over C 0 ( X ) monoidal category tensor unit C 0 ( X ) tensor unit I complex numbers C b ( X ) scalars I → I finitely presented dual objects adjoints dagger finite coverings commutative dagger Frobenius structure unif fin-dim C*-bundles dagger Frobenius structure ‘Scalars are not numbers’ 4 / 15

  6. Bundles of Hilbert spaces Bundle E ։ X , each fibre Hilbert space, operations continuous E t E X t 5 / 15

  7. Bundles of Hilbert spaces Bundle E ։ X , each fibre Hilbert space, operations continuous, with E t E X t 5 / 15

  8. Bundles of Hilbert spaces Bundle E ։ X , each fibre Hilbert space, operations continuous, with E t E X t Hilbert C 0 ( X )-modules ≃ bundles of Hilbert spaces over X sections vanishing at infinity ← � E ։ X E �→ localisation 5 / 15

  9. Idempotent subunits Definition : ISub( C ) = { s : S ֌ I | id S ⊗ s : S ⊗ S → S ⊗ I iso } / ≃ 6 / 15

  10. Idempotent subunits Definition : ISub( C ) = { s : S ֌ I | id S ⊗ s : S ⊗ S → S ⊗ I iso } / ≃ ◮ Analysis: ISub( Hilb C 0 ( X ) ) = { S ⊆ X open } : ‘idempotent subunits are open subsets of base space’ 6 / 15

  11. Idempotent subunits Definition : ISub( C ) = { s : S ֌ I | id S ⊗ s : S ⊗ S → S ⊗ I iso } / ≃ ◮ Analysis: ISub( Hilb C 0 ( X ) ) = { S ⊆ X open } : ‘idempotent subunits are open subsets of base space’ ◮ Logic: ISub(Sh( X )) = { S ⊆ X open } : ‘idempotent subunits are truth values’ 6 / 15

  12. Idempotent subunits Definition : ISub( C ) = { s : S ֌ I | id S ⊗ s : S ⊗ S → S ⊗ I iso } / ≃ ◮ Analysis: ISub( Hilb C 0 ( X ) ) = { S ⊆ X open } : ‘idempotent subunits are open subsets of base space’ ◮ Logic: ISub(Sh( X )) = { S ⊆ X open } : ‘idempotent subunits are truth values’ ◮ Order theory: ISub( Q ) = { x ∈ Q | x 2 = x ≤ 1 } for quantale Q : ‘idempotent subunits are side-effect-free observations’ 6 / 15

  13. Idempotent subunits Definition : ISub( C ) = { s : S ֌ I | id S ⊗ s : S ⊗ S → S ⊗ I iso } / ≃ ◮ Analysis: ISub( Hilb C 0 ( X ) ) = { S ⊆ X open } : ‘idempotent subunits are open subsets of base space’ ◮ Logic: ISub(Sh( X )) = { S ⊆ X open } : ‘idempotent subunits are truth values’ ◮ Order theory: ISub( Q ) = { x ∈ Q | x 2 = x ≤ 1 } for quantale Q : ‘idempotent subunits are side-effect-free observations’ � � S = S 2 } ◮ Algebra: ISub( Mod R ) = { S ⊆ R ideal ‘idempotent subunits are idempotent ideals’ 6 / 15

  14. Semilattice Proposition: ISub( C ) is a semilattice, ∧ = ⊗ , 1 = id I T I S Caveat: C must be firm, i.e. s ⊗ id T monic, and size issue 7 / 15

  15. Semilattice Proposition: ISub( C ) is a semilattice, ∧ = ⊗ , 1 = id I T I S Caveat: C must be firm, i.e. s ⊗ id T monic, and size issue id ⊥ SemiLat FirmCat ISub 7 / 15

  16. Spatial categories Call C spatial when ISub( C ) is frame ⊥ SemiLat Frame ⊣ ISub ⊣ ISub ⊥ SpatCat FirmCat ([ C op , Set ] supp , ⊗ Day ) ( C , ⊗ ) 8 / 15

  17. Support Say s ∈ ISub( C ) supports f : A → B when A B f ≃ B ⊗ S B ⊗ I id ⊗ s 9 / 15

  18. Support Say s ∈ ISub( C ) supports f : A → B when A B f ≃ B ⊗ S B ⊗ I id ⊗ s f { s | s supports f } supp C 2 Pow(ISub( C )) 9 / 15

  19. Support Say s ∈ ISub( C ) supports f : A → B when A B f ≃ B ⊗ S B ⊗ I id ⊗ s Monoidal functor: supp( f ) ∧ supp( g ) ≤ supp( f ⊗ g ) f { s | s supports f } supp C 2 Pow(ISub( C )) 9 / 15

  20. Support Say s ∈ ISub( C ) supports f : A → B when A B f ≃ B ⊗ S B ⊗ I id ⊗ s Monoidal functor: supp( f ) ∧ supp( g ) ≤ supp( f ⊗ g ) f { s | s supports f } supp C 2 Pow(ISub( C )) � F F Q ∈ Frame universal with F ( f ) = � { F ( s ) | s ∈ ISub( C ) supports f } 9 / 15

  21. Restriction � � Full subcategory C s of A with id A ⊗ s invertible: ◮ monoidal with tensor unit S � � ◮ coreflective: C ⊥ C s � � � � ◮ tensor ideal: if A ∈ C and B ∈ C s , then A ⊗ B ∈ C s � � ◮ monocoreflective: counit ε I monic (and id A ⊗ ε I iso for A ∈ C s ) 10 / 15

  22. Restriction � � Full subcategory C s of A with id A ⊗ s invertible: ◮ monoidal with tensor unit S � � ◮ coreflective: C ⊥ C s � � � � ◮ tensor ideal: if A ∈ C and B ∈ C s , then A ⊗ B ∈ C s � � ◮ monocoreflective: counit ε I monic (and id A ⊗ ε I iso for A ∈ C s ) Proposition : ISub( C ) ≃ { monocoreflective tensor ideals in C } 10 / 15

  23. Localisation A graded monad is a monoidal functor E → [ C , C ] ( η : A → T (1), µ : T ( t ) ◦ T ( s ) → T ( s ⊗ t )) � � Lemma : s �→ C s is an ISub( C )-graded monad 11 / 15

  24. Localisation A graded monad is a monoidal functor E → [ C , C ] ( η : A → T (1), µ : T ( t ) ◦ T ( s ) → T ( s ⊗ t )) � � Lemma : s �→ C s is an ISub( C )-graded monad universal property of localisation for Σ = { id E ⊗ s | E ∈ C } ( − ) ⊗ S � � s = C [Σ − 1 ] C C ≃ F inverting Σ D 11 / 15

  25. Spacetime What if X is more than just space? Lorentzian manifold with time orientation: s ≪ t : there is future-directed timelike curve s → t s ≺ t : there is future-directed non-spacelike curve s → t chronological causal I + ( t ) = { s ∈ X | t ≪ s } J + ( t ) = { s ∈ X | t ≺ s } future I − ( t ) = { s ∈ X | s ≪ t } J − ( t ) = { s ∈ X | s ≺ t } past 12 / 15

  26. Spacetime What if X is more than just space? Lorentzian manifold with time orientation: s ≪ t : there is future-directed timelike curve s → t s ≺ t : there is future-directed non-spacelike curve s → t chronological causal I + ( t ) = { s ∈ X | t ≪ s } J + ( t ) = { s ∈ X | t ≺ s } future I − ( t ) = { s ∈ X | s ≪ t } J − ( t ) = { s ∈ X | s ≺ t } past If S ⊆ X open, then I + ( S ) = � s ∈ S I + ( s ) = � s ∈ S J + ( s ) = J + ( S ) I + and I − give ‘future’ and ‘past’ operators 12 / 15

  27. Causal structure Closure operator on partially ordered set P is function C : P → P : ◮ if s ≤ t , then C ( s ) ≤ C ( t ); ◮ s ≤ C ( s ); ◮ C ( C ( s )) ≤ C ( s ). Causal structure on C is pair C ± of closure operators on ISub( C ) 13 / 15

  28. Causal structure Closure operator on partially ordered set P is function C : P → P : ◮ if s ≤ t , then C ( s ) ≤ C ( t ); ◮ s ≤ C ( s ); ◮ C ( C ( s )) ≤ C ( s ). Causal structure on C is pair C ± of closure operators on ISub( C ) Proposition : if r ∈ ISub( C ) and C is closure operator on C , � � then D ( s ) = C ( s ) ∧ r is closure operator on C r ’Causal structure restricts’ 13 / 15

  29. Teleportation ’Restriction = propagation’ Bob Alice pair creation compact category + support + causal structure = teleportation only successful on intersection of future sets 14 / 15

  30. Further ◮ relativistic quantum information protocols ◮ causality ◮ proof analysis ◮ control flow ◮ data flow ◮ concurrency ◮ graphical calculus 15 / 15

  31. Complements s Subunit is split when id S I SISub( C ) is a sub-semilattice of ISub( C ) (don’t need firmness)

  32. Complements s Subunit is split when id S I SISub( C ) is a sub-semilattice of ISub( C ) (don’t need firmness) If C has zero object, ISub( C ) has least element 0 s, s ⊥ are complements if s ∧ s ⊥ = 0 and s ∨ s ⊥ = 1

  33. Complements s Subunit is split when id S I SISub( C ) is a sub-semilattice of ISub( C ) (don’t need firmness) If C has zero object, ISub( C ) has least element 0 s, s ⊥ are complements if s ∧ s ⊥ = 0 and s ∨ s ⊥ = 1 Proposition : when C has finite biproducts, then s, s ⊥ ∈ SISub( C ) are complements if and only if they are biproduct injections Corollary : if ⊕ distributes over ⊗ , then SISub( C ) is a Boolean algebra (universal property?)

  34. Linear logic if T : C → C monoidal monad, Kl( T ) is monoidal semilattice morphism { η I ◦ s | s ∈ ISub( C ) , T ( s ) is monic in C } → ISub(Kl( T )) is not injective, nor surjective

  35. Linear logic if T : C → C monoidal monad, Kl( T ) is monoidal semilattice morphism { η I ◦ s | s ∈ ISub( C ) , T ( s ) is monic in C } → ISub(Kl( T )) is not injective, nor surjective model for linear logic: ∗ -autonomous category C with finite products, monoidal comonad !: ( C , ⊗ ) → ( C , × ) (then Kl(!) cartesian closed) if ε epi, then ISub( C , × ) ≃ ISub(Kl(!) , × ) (but hard to compare to ISub( C , ⊗ ))

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend