bipartite vertex cover
play

Bipartite Vertex Cover Mika Gs University of Toronto & HIIT - PowerPoint PPT Presentation

Bipartite Vertex Cover Mika Gs University of Toronto & HIIT Jukka Suomela University of Helsinki & HIIT Gs and Suomela Bipartite Vertex Cover 18th October 2012 1 / 12 LOCAL model Gs and Suomela Bipartite Vertex Cover


  1. Bipartite Vertex Cover Mika Göös University of Toronto & HIIT Jukka Suomela University of Helsinki & HIIT Göös and Suomela Bipartite Vertex Cover 18th October 2012 1 / 12

  2. LOCAL model Göös and Suomela Bipartite Vertex Cover 18th October 2012 2 / 12

  3. LOCAL model Göös and Suomela Bipartite Vertex Cover 18th October 2012 2 / 12

  4. LOCAL model Göös and Suomela Bipartite Vertex Cover 18th October 2012 2 / 12

  5. LOCAL model Göös and Suomela Bipartite Vertex Cover 18th October 2012 2 / 12

  6. LOCAL model Göös and Suomela Bipartite Vertex Cover 18th October 2012 2 / 12

  7. LOCAL model Göös and Suomela Bipartite Vertex Cover 18th October 2012 2 / 12

  8. LOCAL model Göös and Suomela Bipartite Vertex Cover 18th October 2012 2 / 12

  9. LOCAL model �→ { 0, 1 } Göös and Suomela Bipartite Vertex Cover 18th October 2012 2 / 12

  10. LOCAL model Göös and Suomela Bipartite Vertex Cover 18th October 2012 2 / 12

  11. LOCAL model Definition: A : { } → { 0, 1 } Run-time R = radius- R neighbourhood: 1 Nodes have unique IDs 2 Nodes get random strings as input Göös and Suomela Bipartite Vertex Cover 18th October 2012 3 / 12

  12. ❬❑▼❲ ❪ ❬➴❙ ❪ ❬P❘ ❪ Prior work on Min Vertex Cover (M IN -VC) Apx ratio Run-time � ❬❑▼❲ PODC’04 ❪ General graphs O ( 1 ) Ω ( log n ) Göös and Suomela Bipartite Vertex Cover 18th October 2012 4 / 12

  13. Prior work on Min Vertex Cover (M IN -VC) Apx ratio Run-time � ❬❑▼❲ PODC’04 ❪ General graphs O ( 1 ) Ω ( log n ) O ( 1 ) Bounded degree 0 ❬❑▼❲ SODA’06 ❪ 2 + ǫ O ǫ ( 1 ) ❬➴❙ SPAA’10 ❪ 2 O ( 1 ) ❬P❘ ’07 ❪ 2 − ǫ Ω ( log n ) Göös and Suomela Bipartite Vertex Cover 18th October 2012 4 / 12

  14. Prior work on Min Vertex Cover (M IN -VC) Apx ratio Run-time � ❬❑▼❲ PODC’04 ❪ General graphs O ( 1 ) Ω ( log n ) O ( 1 ) Bounded degree 0 ❬❑▼❲ SODA’06 ❪ 2 + ǫ O ǫ ( 1 ) ❬➴❙ SPAA’10 ❪ 2 O ( 1 ) ❬P❘ ’07 ❪ 2 − ǫ Ω ( log n ) Note: M IN -VC is solvable on bipartite graphs using sequential polynomial-time algorithms! Göös and Suomela Bipartite Vertex Cover 18th October 2012 4 / 12

  15. The bipartite case Question: Can we approximate M IN -VC fast on bipartite graphs? Göös and Suomela Bipartite Vertex Cover 18th October 2012 5 / 12

  16. The bipartite case Question: Can we approximate M IN -VC fast on bipartite graphs? ( 1 + ǫ ) -approximation scheme? Göös and Suomela Bipartite Vertex Cover 18th October 2012 5 / 12

  17. ❬❑▼❲ ❪ ❬◆❖ ❪ ❬➴P❘❙❯ ❪ The bipartite case − Bipartite 2-coloured graph Setting: − Bounded degree ∆ = O ( 1 ) − Compute ( 1 + ǫ ) -approximation Göös and Suomela Bipartite Vertex Cover 18th October 2012 6 / 12

  18. ❬❑▼❲ ❪ ❬◆❖ ❪ ❬➴P❘❙❯ ❪ The bipartite case − Bipartite 2-coloured graph Setting: − Bounded degree ∆ = O ( 1 ) − Compute ( 1 + ǫ ) -approximation Covering Min Integer VC Göös and Suomela Bipartite Vertex Cover 18th October 2012 6 / 12

  19. ❬❑▼❲ ❪ ❬◆❖ ❪ ❬➴P❘❙❯ ❪ The bipartite case − Bipartite 2-coloured graph Setting: − Bounded degree ∆ = O ( 1 ) − Compute ( 1 + ǫ ) -approximation Covering Min Integer VC Min LP Frac. VC Göös and Suomela Bipartite Vertex Cover 18th October 2012 6 / 12

  20. ❬❑▼❲ ❪ ❬◆❖ ❪ ❬➴P❘❙❯ ❪ The bipartite case − Bipartite 2-coloured graph Setting: − Bounded degree ∆ = O ( 1 ) − Compute ( 1 + ǫ ) -approximation Covering Packing Min Max Integer VC Matching Min Max LP Frac. VC Frac. Matching Göös and Suomela Bipartite Vertex Cover 18th October 2012 6 / 12

  21. ❬❑▼❲ ❪ ❬◆❖ ❪ ❬➴P❘❙❯ ❪ The bipartite case − Bipartite 2-coloured graph Setting: − Bounded degree ∆ = O ( 1 ) − Compute ( 1 + ǫ ) -approximation Covering Packing Min Max Integer VC Matching = Min Max LP Frac. VC Frac. Matching = LP duality Göös and Suomela Bipartite Vertex Cover 18th October 2012 6 / 12

  22. ❬❑▼❲ ❪ ❬◆❖ ❪ ❬➴P❘❙❯ ❪ The bipartite case − Bipartite 2-coloured graph Setting: − Bounded degree ∆ = O ( 1 ) − Compute ( 1 + ǫ ) -approximation Covering Packing Min Max Integer VC Matching = = = Min Max LP Frac. VC Frac. Matching = LP duality = Total unimodularity Göös and Suomela Bipartite Vertex Cover 18th October 2012 6 / 12

  23. ❬❑▼❲ ❪ ❬◆❖ ❪ ❬➴P❘❙❯ ❪ The bipartite case − Bipartite 2-coloured graph Setting: − Bounded degree ∆ = O ( 1 ) − Compute ( 1 + ǫ ) -approximation Covering Packing = Min Max Integer VC Matching = = = Min Max LP Frac. VC Frac. Matching = LP duality = Total unimodularity = König’s theorem Göös and Suomela Bipartite Vertex Cover 18th October 2012 6 / 12

  24. ❬◆❖ ❪ ❬➴P❘❙❯ ❪ The bipartite case − Bipartite 2-coloured graph Setting: − Bounded degree ∆ = O ( 1 ) − Compute ( 1 + ǫ ) -approximation Covering Packing Min Max Integer VC Matching O ǫ ( 1 ) O ǫ ( 1 ) LP ❬❑▼❲ SODA’06 ❪ Göös and Suomela Bipartite Vertex Cover 18th October 2012 6 / 12

  25. The bipartite case − Bipartite 2-coloured graph Setting: − Bounded degree ∆ = O ( 1 ) − Compute ( 1 + ǫ ) -approximation Covering Packing Min O ǫ ( 1 ) Integer VC O ǫ ( 1 ) O ǫ ( 1 ) LP ❬❑▼❲ SODA’06 ❪ ❬◆❖ FOCS’08 ❪ , ❬➴P❘❙❯ ’10 ❪ Göös and Suomela Bipartite Vertex Cover 18th October 2012 6 / 12

  26. ❬❑▼❲ ❪ ❬◆❖ ❪ ❬➴P❘❙❯ ❪ The bipartite case Covering Packing ??? O ǫ ( 1 ) Integer O ǫ ( 1 ) O ǫ ( 1 ) LP Göös and Suomela Bipartite Vertex Cover 18th October 2012 6 / 12

  27. ❬❑▼❲ ❪ ❬◆❖ ❪ ❬➴P❘❙❯ ❪ The bipartite case Covering Packing Ω ( log n ) O ǫ ( 1 ) Integer O ǫ ( 1 ) O ǫ ( 1 ) LP Göös and Suomela Bipartite Vertex Cover 18th October 2012 6 / 12

  28. ❬❑▼❲ ❪ ❬◆❖ ❪ ❬➴P❘❙❯ ❪ The bipartite case Surprise: No Sublogarithmic-Time Approximation Scheme for Bipartite Vertex Cover! Covering Packing Ω ( log n ) O ǫ ( 1 ) Integer O ǫ ( 1 ) O ǫ ( 1 ) LP Göös and Suomela Bipartite Vertex Cover 18th October 2012 6 / 12

  29. ❬▲❙ ❪ Our result Main Theorem ∃ δ > 0 : No o ( log n ) -time algorithm to ( 1 + δ ) -approximate M IN -VC on 2-coloured graphs of max degree ∆ = 3 Göös and Suomela Bipartite Vertex Cover 18th October 2012 7 / 12

  30. Our result Main Theorem ∃ δ > 0 : No o ( log n ) -time algorithm to ( 1 + δ ) -approximate M IN -VC on 2-coloured graphs of max degree ∆ = 3 Lower bound is tight 1 There is O ǫ ( log n ) -time approx. scheme ❬▲❙ ’93 ❪ 2 If ∆ = 2 there is O ǫ ( 1 ) -time approx. scheme Göös and Suomela Bipartite Vertex Cover 18th October 2012 7 / 12

  31. Why is M IN -VC difficult for distributed graph algorithms? Short answer: Solving M IN -VC requires solving a hard cut minimisation problem Göös and Suomela Bipartite Vertex Cover 18th October 2012 8 / 12

  32. Why is M IN -VC difficult for distributed graph algorithms? Short answer: Solving M IN -VC requires solving a hard cut minimisation problem Strategy: 1. Reduce cut problem to M IN -VC 2. Prove that cut problem is hard Göös and Suomela Bipartite Vertex Cover 18th October 2012 8 / 12

  33. ♦✉t ♦✉t Reduction formalised R ECUT problem Input: Labelled graph ( G , ℓ ✐♥ ) where ℓ ✐♥ : V → { r❡❞ , ❜❧✉❡ } Output: Labelling ℓ ♦✉t : V → { r❡❞ , ❜❧✉❡ } that minimises the size of the cut | ℓ ♦✉t | subject to − If ℓ ✐♥ is all- r❡❞ then ℓ ♦✉t is all- r❡❞ − If ℓ ✐♥ is all- ❜❧✉❡ then ℓ ♦✉t is all- ❜❧✉❡ ℓ ✐♥ Göös and Suomela Bipartite Vertex Cover 18th October 2012 9 / 12

  34. ♦✉t Reduction formalised R ECUT problem Input: Labelled graph ( G , ℓ ✐♥ ) where ℓ ✐♥ : V → { r❡❞ , ❜❧✉❡ } Output: Labelling ℓ ♦✉t : V → { r❡❞ , ❜❧✉❡ } that minimises the size of the cut | ℓ ♦✉t | subject to − If ℓ ✐♥ is all- r❡❞ then ℓ ♦✉t is all- r❡❞ − If ℓ ✐♥ is all- ❜❧✉❡ then ℓ ♦✉t is all- ❜❧✉❡ ℓ ✐♥ Global optimum �− → Göös and Suomela Bipartite Vertex Cover 18th October 2012 9 / 12

  35. ♦✉t Reduction formalised R ECUT problem Input: Labelled graph ( G , ℓ ✐♥ ) where ℓ ✐♥ : V → { r❡❞ , ❜❧✉❡ } Output: Labelling ℓ ♦✉t : V → { r❡❞ , ❜❧✉❡ } that minimises the size of the cut | ℓ ♦✉t | subject to − If ℓ ✐♥ is all- r❡❞ then ℓ ♦✉t is all- r❡❞ − If ℓ ✐♥ is all- ❜❧✉❡ then ℓ ♦✉t is all- ❜❧✉❡ ℓ ✐♥ ℓ ♦✉t �− → Göös and Suomela Bipartite Vertex Cover 18th October 2012 9 / 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend