bipartite subfamilies of planar graphs
play

Bipartite subfamilies of planar graphs Juanjo Ru e Instituto de - PowerPoint PPT Presentation

Bipartite subfamilies of planar graphs Juanjo Ru e Instituto de Ciencias Matem aticas, Madrid Journ ee-s eminaire de Combinatoire CALIN, Paris Nord The material of this talk 1 . Background 2 . Graph decompositions. First


  1. Bipartite subfamilies of planar graphs Juanjo Ru´ e Instituto de Ciencias Matem´ aticas, Madrid Journ´ ee-s´ eminaire de Combinatoire CALIN, Paris Nord

  2. The material of this talk 1 . − Background 2 . − Graph decompositions. First results 3 . − The bipartite framework

  3. Background

  4. Objects: graphs Labelled Graph = labelled vertices+edges . Unlabelled Graph = labelled one up to permutation of labels . Simple Graph = NO multiples edges, NO loops . 2 1 3 1 1 2 3 2 3 2 3 1 Question : How many graphs with n vertices are in the family?

  5. The counting series Strategy : Encapsulate these numbers → Counting series ◮ Labelled framework: exponential generating functions ∑ ∑ x | a | |A n | n ! x n A ( x ) = | a | ! = a ∈A n ≥ 0 ◮ Unlabelled framework: cycle index sums ∑ ∑ 1 s c 1 1 s c 2 2 · · · s c n Z A ( s 1 , s 2 , . . . ) = n , n ! n ≥ 0 ( σ,g ) ∈ S n ×A n σ · g = g ∑ A ( x ) = Z A ( x, x 2 , x 3 , . . . ) = � | � A n | x n . n ≥ 0

  6. The symbolic method COMBINATORIAL RELATIONS between CLASSES ↕⇕↕ EQUATIONS between GENERATING FUNCTIONS Class Labelled setting Unlabelled setting C ( x ) = � � A ( x ) + � C = A ∪ B C ( x ) = A ( x ) + B ( x ) B ( x ) C ( x ) = � � A ( x ) · � C = A × B C ( x ) = A ( x ) · B ( x ) B ( x ) ( ∑ ) � i � 1 B ( x i ) C = Set( B ) C ( x ) = exp( B ( x )) C ( x ) = exp i ≥ 1 C ( x ) = Z A ( � � B ( x ) , � B ( x 2 ) , . . . ) C = A ◦ B C ( x ) = A ( B ( x ))

  7. Singularity analysis on generating functions GFs: analytic functions in a neighbourhood of the origin. The smallest singularity of A ( z ) determines the asymptotics of the coefficients of A ( z ) . ◮ POSITION: exponential growth ρ . ◮ NATURE: subexponential growth ◮ Transfer Theorems: Let α / ∈ { 0 , − 1 , − 2 , . . . } . If A ( z ) = a · (1 − z/ρ ) − α + o ((1 − z/ρ ) − α ) then a Γ( α ) · n α − 1 · ρ − n (1 + o (1)) a n = [ z n ] A ( z ) ∼

  8. Our starting point Asymptotic enumeration and limit laws of planar graphs (Gim´ enez, Noy) g 1 · n − 7 / 2 · γ n 1 · n ! · (1 + o (1)) Asymptotic enumeration and limit laws of series-parallel graphs (Bodirsky, Gim´ enez, Kang, Noy) g 2 · n − 5 / 2 · γ n 2 · n ! · (1 + o (1))

  9. Our starting point Asymptotic enumeration and limit laws of planar graphs [Gim´ enez, Noy] g 1 · n − 7 / 2 · γ n 1 · n ! · (1 + o (1)) Asymptotic enumeration and limit laws of series-parallel graphs [Bodirsky, Gim´ enez, Kang, Noy] g 2 · n − 5 / 2 · γ n 2 · n ! · (1 + o (1))

  10. Our starting point g 1 · n − 7 / 2 · γ n 1 · n ! · (1 + o (1)) g 2 · n − 5 / 2 · γ n 2 · n ! · (1 + o (1)) � THE SUBEXPONENTIAL TERM GIVES THE “PHYSICS” OF THE GRAPHS ⇕ GENERAL FRAMEWORK TO UNDERSTAND THIS EXPONENT

  11. Graph decompositions. First results

  12. General graphs from connected graphs Let C be a family of connected graphs. G : graphs such that their connected components are in C . G = Set( C ) = ⇒ G ( x, y ) = exp( C ( x, y ))

  13. General graphs from connected graphs Let C be a family of connected graphs. G : graphs such that their connected components are in C . G = Set( C ) = ⇒ G ( x ) = exp( C ( x ))

  14. Connected graphs from 2-connected graphs Let B be a family of 2-connected graphs. C : connected graphs with blocks in B . In other words, a vertex-rooted connected graph is a tree of 2-connected blocks. C o = v × Set( B o ( v ← C o )) = ⇒ xC ′ ( x ) = x exp B ′ ( xC ′ ( x ))

  15. Connected graphs from 2-connected graphs Let B be a family of 2-connected graphs. C : connected graphs with blocks in B . In other words, a vertex-rooted connected graph is a tree of 2-connected blocks. C • = v × SET( B o ( v ← C • )) = ⇒ xC ′ ( x ) = x exp B ′ ( xC ′ ( x ))

  16. Connected graphs from 2-connected graphs A vertex-rooted connected graph is a tree of rooted blocks. C • = v × Set( B ′ ( v ← C • )) = ⇒ C • ( x ) = x exp B ′ ( C • ( x ))

  17. 2-connected graphs from 3-connected graphs Decomposition in 3-connected components is slightly harder. Let T be a family of 3-connected graphs: T ( x, z ). We define B as those 2-connected graphs such that can be obtained from series , parallel , and T -compositions. ( xD 2 ) 1 ∂T D ( x, y ) = (1 + y ) exp 1 + xD + ∂z ( x, D ) − 1 2 x 2 ( 1 + D ( x, y ) ) ∂y ( x, y ) = x 2 ∂B 2 1 + y D is the GF for networks (essentially edge-rooted 2-connected graphs without the edge root).

  18. A set of equations ( 1 + D )  xD 2 1 ∂T   ∂z ( x, D ) − log + 1 + xD = 0  2 x 2 D 1 + y ( 1 + D ( x, y ) ) ∂y ( x, y ) = x 2  ∂B   2 1 + y  ( ) C • ( x ) = x exp B ′ ( C • ( x ))   G ( x ) = exp( C ( x ))

  19. Examples of families & excluded minors (I) ◮ Series-parallel graphs ◮ Excluded minors: ◮ T : None. ◮ T ( x, z ) = 0 . ◮ Planar graphs ◮ Excluded minors: ◮ T : 3-connected planar graphs. ◮ T ( x, z ) : The number of labelled 2-connected planar graphs (Bender, Gao, Wormald, 2002)

  20. Examples of families & excluded minors (II) ◮ W 4 -free ◮ Excluded minors: ◮ T : ◮ T ( x, z ) = 1 4! x 4 z 6 . ◮ K − 5 -free ◮ Excluded minors: ◮ T : , . . . ( log(1 − xz 2 ) + 2 xz 2 + x 2 z 4 ) 6! x 6 z 9 − 1 ◮ T ( x, z ) = 70 2 x .

  21. Examples of families & excluded minors (III) ◮ K 3 , 3 -free (Gerke, Gim´ enez, Noy, Weibl, 2006) ◮ Excluded minors: ◮ 3-connected components: , 3-connected planar graphs. ◮ T ( x, z ) = . . . . ◮ If G = Ex( M ) and all the excluded minors M are 3-connected, then G can be expressed in terms of its 3-connected graphs.

  22. RESULT: asymptotic enumeration If either ∂T ∂z ( x, z ) ◮ has no singularity, or ◮ the singularity type is (1 − z/z 0 ) α with α < 1, then the situation is alike to the series-parallel case : d n ∼ d · n − 3 / 2 · x − n D ( x ) ∼ d · (1 − x/x 0 ) 1 / 2 · n ! 0 b n ∼ b · n − 5 / 2 · x − n B ( x ) ∼ b · (1 − x/x 0 ) 3 / 2 · n ! 0 c n ∼ c · n − 5 / 2 · ρ − n · n ! C ( x ) ∼ c · (1 − x/ρ ) 3 / 2 g n ∼ g · n − 5 / 2 · ρ − n · n ! G ( x ) ∼ g · (1 − x/ρ ) 3 / 2

  23. RESULT: asymptotic enumeration (II) If ∂T ∂z ( x, z ) has singularity type (1 − z/z 0 ) 3 / 2 , then 3 different situations may happen. Case 1 ( Planar case ) d n ∼ d · n − 5 / 2 · x − n D ( x ) ∼ d · (1 − x/x 0 ) 3 / 2 · n ! 0 b n ∼ b · n − 7 / 2 · x − n B ( x ) ∼ b · (1 − x/x 0 ) 5 / 2 · n ! 0 c n ∼ c · n − 7 / 2 · ρ − n · n ! C ( x ) ∼ c · (1 − x/ρ ) 5 / 2 g n ∼ g · n − 7 / 2 · ρ − n · n ! G ( x ) ∼ g · (1 − x/ρ ) 5 / 2

  24. RESULT: asymptotic enumeration (II) If ∂T ∂z ( x, z ) has singularity type (1 − z/z 0 ) 3 / 2 , then 3 different situations may happen. Case 2 ( Series-parallel case ) d n ∼ d · n − 3 / 2 · x − n D ( x ) ∼ d · (1 − x/x 0 ) 1 / 2 · n ! 0 b n ∼ b · n − 5 / 2 · x − n B ( x ) ∼ b · (1 − x/x 0 ) 3 / 2 · n ! 0 c n ∼ c · n − 5 / 2 · ρ − n · n ! C ( x ) ∼ c · (1 − x/ρ ) 3 / 2 g n ∼ g · n − 5 / 2 · ρ − n · n ! G ( x ) ∼ g · (1 − x/ρ ) 3 / 2

  25. RESULT: asymptotic enumeration (II) If ∂T ∂z ( x, z ) has singularity type (1 − z/z 0 ) 3 / 2 , then 3 different situations may happen. Case 3 ( Mixed case ) d n ∼ d · n − 5 / 2 · x − n D ( x ) ∼ d · (1 − x/x 0 ) 3 / 2 · n ! 0 b n ∼ b · n − 7 / 2 · x − n B ( x ) ∼ b · (1 − x/x 0 ) 5 / 2 · n ! 0 c n ∼ c · n − 5 / 2 · ρ − n · n ! C ( x ) ∼ c · (1 − x/ρ ) 3 / 2 g n ∼ g · n − 5 / 2 · ρ − n · n ! G ( x ) ∼ g · (1 − x/ρ ) 3 / 2

  26. 2 different pictures Series-parallel-like situation Planar-like situation

  27. The bipartite framework

  28. A key example: Trees We count rooted trees ⇒ T = • × Set( T ) → T ( x ) = xe T ( x ) To forget the root, we just integrate: ( xU ′ ( x ) = T ( x )) { } ∫ x ∫ T ( x ) T ( s ) 1 − u du = T ( x ) − 1 T ( s ) = u 2 T ( x ) 2 ds = = T ′ ( s ) ds = du s 0 T (0) Question: can we interpret this formula combinatorially ?

  29. The dissymmetry theorem Let T a class of unrooted trees ⇒ canonical root (their centers). Dissymmetry Theorem for trees: T ∪ T •→• ≃ T •−• ∪ T • , For trees: T •→• → T ( x ) 2 ; T •−• → 1 2 T ( x ) 2 ; T • → T ( x ) . Dissymmetry Theorem ≡ Combinatorial Integration .

  30. Returning to the equations ( 1 + D ( x, y ) ) ∂y ( x, y ) = x 2 ∂y ( x, y ) = x 2 ∂B ↔ 2(1 + y ) ∂B 2 (1 + D ( x, y )) 2 1 + y ⇓ ∫ y ( 1 + D ( x, s ) ) B ( x, y ) = x 2 ds 2 1 + s 0 Amazingly, an EXACT formula exists! T ( x, D ( x, y )) − 1 2 xD ( x, y ) + 1 B ( x, y ) = 2 log(1 + xD ( x, y )) + ( ( )) x 2 D ( x, y ) + 1 1 + y 2 D ( x, y ) 2 + (1 + D ( x, y )) log . 2 1 + D ( x, y ) Is there a “tree-like” argument to explain this formula?

  31. The complete grammar for graphs A Grammar for Decomposing a Family of Graphs into 3-connected Components; (Chapuy, Fusy, Kang, Shoilekova) This system is obtained ap- plying the dissymmetry theorem for trees in an ingenious way . The key step is the one which translates combina- torially the integration!

  32. Bipartite Graphs: the strategy (I) Can we apply the same decomposition for bipartite graphs? 1-sums are easy! The 2-connected components are also bipartite

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend