binomial coefficients and subsets enumeration
play

Binomial Coefficients and Subsets Enumeration the basis of - PowerPoint PPT Presentation

S UBSETS A LGEBRA R ULES D ERANGEMENT F IBONACCI P IGEONS HOLES R EFERENCES Binomial Coefficients and Subsets Enumeration the basis of combinatorics Master MOSIG : Mathematics for Computer Science Jean-Marc.Vincent@imag.fr September 2018


  1. S UBSETS A LGEBRA R ULES D ERANGEMENT F IBONACCI P IGEONS ’ HOLES R EFERENCES Binomial Coefficients and Subsets Enumeration the basis of combinatorics Master MOSIG : Mathematics for Computer Science Jean-Marc.Vincent@imag.fr September 2018 These notes are only the sketch of the lecture : the aim is to apply the basic counting techniques to the binomial coefficients and establish combinatorial equalities. References : Concrete Mathematics : A Foundation for Computer Science Ronald L. Graham, Donald E. Knuth and Oren Patashnik Addison-Wesley 1989 (chapter 5) Binomial Coefficients and Subsets Enumeration 1 / 23

  2. S UBSETS A LGEBRA R ULES D ERANGEMENT F IBONACCI P IGEONS ’ HOLES R EFERENCES B INOMIAL C OEFFICIENTS AND C OMBINATORICS T HE PROBLEM : Subset Enumeration 1 A LGEBRAIC A PPROACH 2 C OMBINATORIAL R ULES 3 D ERANGEMENT 4 F IBONACCI ’ S N UMBERS 5 P IGEONS ’ HOLES 6 B IBLIOGRAPHY 7 Binomial Coefficients and Subsets Enumeration 2 / 23

  3. S UBSETS A LGEBRA R ULES D ERANGEMENT F IBONACCI P IGEONS ’ HOLES R EFERENCES S UBSET E NUMERATION � n � is the number of ways to choose k elements among n elements k http://www-history.mcs.st-and.ac.uk/Biographies/Pascal.html For all integers 0 � k � n � n � = n ( n − 1 ) · · · ( n − k + 1 ) (1) k k ! Binomial Coefficients and Subsets Enumeration 3 / 23

  4. S UBSETS A LGEBRA R ULES D ERANGEMENT F IBONACCI P IGEONS ’ HOLES R EFERENCES S UBSET E NUMERATION � n � is the number of ways to choose k elements among n elements k http://www-history.mcs.st-and.ac.uk/Biographies/Pascal.html For all integers 0 � k � n � n � = n ( n − 1 ) · · · ( n − k + 1 ) (1) k k ! Prove the equality by a combinatorial argument Hint : the number of sequences of k different elements among n is n ( n − 1 ) · · · ( n − k + 1 ) and the number of orderings of a set of size k is k ! . Binomial Coefficients and Subsets Enumeration 3 / 23

  5. S UBSETS A LGEBRA R ULES D ERANGEMENT F IBONACCI P IGEONS ’ HOLES R EFERENCES B ASIC PROPERTIES � n � n ! = (2) k k !( n − k )! Prove it directly from Equation 1 For all integers 0 � k � n � n � � n � = (3) k n − k Prove it directly from 2 Prove it by a combinatorial argument Binomial Coefficients and Subsets Enumeration 4 / 23

  6. S UBSETS A LGEBRA R ULES D ERANGEMENT F IBONACCI P IGEONS ’ HOLES R EFERENCES B ASIC PROPERTIES � n � n ! = (2) k k !( n − k )! Prove it directly from Equation 1 For all integers 0 � k � n � n � � n � = (3) k n − k Prove it directly from 2 Prove it by a combinatorial argument Hint : bijection between the set of subsets of size k and ??? . Exercise Give a combinatorial argument to prove that for all integers 0 � k � n : � n � � n − 1 � k = n (4) k − 1 k Binomial Coefficients and Subsets Enumeration 4 / 23

  7. S UBSETS A LGEBRA R ULES D ERANGEMENT F IBONACCI P IGEONS ’ HOLES R EFERENCES P ASCAL ’ S TRIANGLE Recurrence Equation The binomial coefficients satisfy � n � � n − 1 � � n − 1 � = + (5) k k − 1 k Prove it directly from Equation 1 Prove it by a combinatorial argument Binomial Coefficients and Subsets Enumeration 5 / 23

  8. S UBSETS A LGEBRA R ULES D ERANGEMENT F IBONACCI P IGEONS ’ HOLES R EFERENCES P ASCAL ’ S TRIANGLE Recurrence Equation The binomial coefficients satisfy � n � � n − 1 � � n − 1 � = + (5) k k − 1 k Prove it directly from Equation 1 Prove it by a combinatorial argument Hint : partition in two parts the set of subsets of size k ; those containing a given element and those not . Binomial Coefficients and Subsets Enumeration 5 / 23

  9. S UBSETS A LGEBRA R ULES D ERANGEMENT F IBONACCI P IGEONS ’ HOLES R EFERENCES P ASCAL ’ S TRIANGLE (2) 1 1 1 + 1 2 1 + + 1 3 3 1 + + + 1 4 6 4 1 + + + + 1 5 10 10 5 1 + + + + + 1 6 15 20 15 6 1 + + + + + + 1 7 21 35 35 21 7 1 + + + + + + + 1 8 28 56 70 56 28 8 1 + + + + + + + + 1 9 36 84 126 126 84 36 9 1 + + + + + + + + + 1 10 45 120 210 252 210 120 45 10 1 + + + + + + + + + + 1 11 55 165 330 462 462 330 165 55 11 1 + + + + + + + + + + + 1 12 66 220 495 792 924 792 495 220 66 12 1 + + + + + + + + + + + + 1 13 78 286 715 1287 1716 1716 1287 715 286 78 13 1 + + + + + + + + + + + + + 1 14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 1 + + + + + + + + + + + + + + 1 15 105 455 1365 3003 5005 6435 6435 5005 3003 1365 455 105 15 1 + + + + + + + + + + + + + + + 1 16 120 560 1820 4368 8008 11440 12870 11440 8008 4368 1820 560 120 16 1 Thanks to Tikz/Gaborit Binomial Coefficients and Subsets Enumeration 6 / 23

  10. S UBSETS A LGEBRA R ULES D ERANGEMENT F IBONACCI P IGEONS ’ HOLES R EFERENCES B INOMIAL C OEFFICIENTS AND C OMBINATORICS T HE PROBLEM : Subset Enumeration 1 A LGEBRAIC A PPROACH 2 C OMBINATORIAL R ULES 3 D ERANGEMENT 4 F IBONACCI ’ S N UMBERS 5 P IGEONS ’ HOLES 6 B IBLIOGRAPHY 7 Binomial Coefficients and Subsets Enumeration 7 / 23

  11. S UBSETS A LGEBRA R ULES D ERANGEMENT F IBONACCI P IGEONS ’ HOLES R EFERENCES T HE BINOMIAL THEOREM For all integer n and a formal parameter X n � n � � ( 1 + X ) n = X k (Newton 1666) (6) k k = 0 Binomial Coefficients and Subsets Enumeration 8 / 23

  12. S UBSETS A LGEBRA R ULES D ERANGEMENT F IBONACCI P IGEONS ’ HOLES R EFERENCES T HE BINOMIAL THEOREM For all integer n and a formal parameter X n � n � � ( 1 + X ) n = X k (Newton 1666) (6) k k = 0 Prove it by a combinatorial argument Binomial Coefficients and Subsets Enumeration 8 / 23

  13. S UBSETS A LGEBRA R ULES D ERANGEMENT F IBONACCI P IGEONS ’ HOLES R EFERENCES T HE BINOMIAL THEOREM For all integer n and a formal parameter X n � n � � ( 1 + X ) n = X k (Newton 1666) (6) k k = 0 Prove it by a combinatorial argument Hint : write ( 1 + X ) n = ( 1 + X )( 1 + X ) · · · ( 1 + X ) in each term choose 1 or X, what is the � �� � n terms coefficient of X k in the result (think "vector of n bits"). Exercises Use a combinatorial argument to prove : n � n � � = 2 n k k = 0 Use the binomial theorem to prove (give also a combinatorial argument) n n � n � � n � � � = 2 n − 1 = k k k = 0 k odd k = 0 k even Binomial Coefficients and Subsets Enumeration 8 / 23

  14. S UBSETS A LGEBRA R ULES D ERANGEMENT F IBONACCI P IGEONS ’ HOLES R EFERENCES S UMMATIONS AND D ECOMPOSITIONS The Vandermonde Convolution For all integers m , n , k k � m �� n � � m + n � � = (7) j k − j k j = 0 Prove it by a combinatorial argument Hint : choose k elements in two sets one of size m and the other n . Exercise Prove that n � 2 � n � 2 n � � = (8) k n k = 0 Hint : Specify Equation 7 Binomial Coefficients and Subsets Enumeration 9 / 23

  15. S UBSETS A LGEBRA R ULES D ERANGEMENT F IBONACCI P IGEONS ’ HOLES R EFERENCES S UMMATIONS AND D ECOMPOSITIONS (2) Upper summation For all integers p � n n � k � � n + 1 � � = (9) p p + 1 k = p Exercises Establish the so classical result n � k � � 1 k = 1 Compute n n � k � � � k 2 and deduce the value of 2 k = 2 k = 1 Binomial Coefficients and Subsets Enumeration 10 / 23

  16. S UBSETS A LGEBRA R ULES D ERANGEMENT F IBONACCI P IGEONS ’ HOLES R EFERENCES B INOMIAL C OEFFICIENTS AND C OMBINATORICS T HE PROBLEM : Subset Enumeration 1 A LGEBRAIC A PPROACH 2 C OMBINATORIAL R ULES 3 D ERANGEMENT 4 F IBONACCI ’ S N UMBERS 5 P IGEONS ’ HOLES 6 B IBLIOGRAPHY 7 Binomial Coefficients and Subsets Enumeration 11 / 23

  17. S UBSETS A LGEBRA R ULES D ERANGEMENT F IBONACCI P IGEONS ’ HOLES R EFERENCES T HE M AIN R ULES IN C OMBINATORICS (I) Bijection Rule Let A and B be two finite sets if there exists a bijection between A and B then | A | = | B | . Summation Rule Let A and B be two disjoint finite sets then | A ∪ B | = | A | + | B | . Moreover if { A 1 , · · · A n } is a partition of A (for all i � = j , A i ∩ A j = ∅ and � n i = 0 A i = A ) n � | A | = | A i | . i = 0 Binomial Coefficients and Subsets Enumeration 12 / 23

  18. S UBSETS A LGEBRA R ULES D ERANGEMENT F IBONACCI P IGEONS ’ HOLES R EFERENCES T HE M AIN R ULES IN C OMBINATORICS (II) Product rule Let A and B be two finite sets then | A × B | = | A | . | B | . Inclusion/Exclusion principle Let A 1 , A 2 , · · · A n be sets � � n � � � � � � � ( − 1 ) k | A 1 ∪ · · · ∪ A n | = A i � � . � � � � k = 1 S ⊂{ 1 , ··· , n } , | S | = k i ∈ S Exercises Illustrate these rules by the previous examples, giving the sets on which the rule apply. Binomial Coefficients and Subsets Enumeration 13 / 23

  19. S UBSETS A LGEBRA R ULES D ERANGEMENT F IBONACCI P IGEONS ’ HOLES R EFERENCES B INOMIAL C OEFFICIENTS AND C OMBINATORICS T HE PROBLEM : Subset Enumeration 1 A LGEBRAIC A PPROACH 2 C OMBINATORIAL R ULES 3 D ERANGEMENT 4 F IBONACCI ’ S N UMBERS 5 P IGEONS ’ HOLES 6 B IBLIOGRAPHY 7 Binomial Coefficients and Subsets Enumeration 14 / 23

  20. S UBSETS A LGEBRA R ULES D ERANGEMENT F IBONACCI P IGEONS ’ HOLES R EFERENCES D ERANGEMENT Definition A derangement of a set S is a bijection on S without fixed point. Number of derangements of n elements d n (notation ! n ). Binomial Coefficients and Subsets Enumeration 15 / 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend