beryllium ion collisions and free free transition in h
play

Beryllium ion collisions and free-free transition in H plasma L. Liu - PowerPoint PPT Presentation

Beryllium ion collisions and free-free transition in H plasma L. Liu 1 , S. B. Zhang 2 , C.H.Liu 3 , Y. Wu 1 , J.G.Wang 1 and R.K.Janve 4 1 Institute of Applied Physics and Computational Mathematics, Beijing, China 2 Shaanxi Normal University,


  1. Beryllium ion collisions and free-free transition in H plasma L. Liu 1 , S. B. Zhang 2 , C.H.Liu 3 , Y. Wu 1 , J.G.Wang 1 and R.K.Janve 4 1 Institute of Applied Physics and Computational Mathematics, Beijing, China 2 Shaanxi Normal University, Xi’an, China 3 Southeast University, Nanjing, China 4 Macedonian Academy of Sciences and Arts, Skopje, Macedonia The IAEA 1 th RCM on Vapour Shielding, Vienna, 2019.03.13 1

  2. Part 1 Beryllium ion collisions 2

  3. Outline • Motivation • Theoretical method • Results and discussions H + -Be + →H( nl )+Be 2+ →H + +Be + ( 1s 2 nl ), n>2 →H + +Be 2+ (1s 2 )+e Be 3+ -Li→Be 2+ +Li + • Summary 3

  4. fusion energy Astrophysics Environmental science Medicine Heavy particle collisions Agriculture Natural resource Atmospheric 大气物理 High technology 臭氧层 physics 4

  5. Diverter/plasma edge Motivation Neutral Beam Injection Heating Tokomak Diagnostics 5

  6. Jupiter aurora Jupiter aurora: EUV and X-ray O q+ + H 2 → O (q-1)+ (n l ) + H 2 + O (q-1)+ (nl) → O (q-1)+ (n’ l ’) + hυ 6

  7. Outline • Motivation • Theoretical method • Results and discussions H + -Be + →H( nl )+Be 2+ →H + +Be + ( 1s 2 nl ), n>2 →H + +Be 2+ (1s 2 )+e Be 3+ -Li→Be 2+ +Li + • Summary 7

  8. Theoretical method  Fully quantum mechanical molecular orbital close-coupling (MOCC) method  Two-center atomic orbital close-coupling (TC-AOCC) method 8

  9. MOCC method • Molecular structure calculations Multi-reference single- and double-excitation configration interaction (MRDCI) approach (Collaborated with Prof. R. Buenker) • Scattering calculations Close-coupling approach (Collaborated with Prof. P. C. Stancil) 9

  10. MOCC method Approximations:  Born-Oppenheim approximation (BO)  Perturbed stationary-state approximation (PSS)       ( R , ) F ( R ) ( | R )   i i  System Hamilton: 1       2 H ( R , ) H ( | R ) i R ad i  2 R        H ( | R ) ( | R ) ( R , ) ( | R )    ad i i i 10

  11. Total wave function can be written as       ( R , ) F ( R ) ( | R )   i i  By the variation theory, the adiabatic close-coupling scattering equation is obtained: The coupled equations are transformed to a diabatic representation:          2 d       d 2 E ( R , ) F ( R , ) 2 V F ( R , )     , ' '  R R R    ' 11

  12. Using a partial wave decomposition method, the radial wavefunction and the S-matrix are obtained: 1     lm l lim f ( R ) { j ( k R ) K ( k R )}        , ' l , ' l ' k   R  '  l I iK  l S  l I iK The differential and integrate total cross sections are respectively:   d ( ) 1     l 2 [ ( 2 l 1 ) S P (cos )] i , j l  2 d 4 k l   2      l ( k ) ( 2 l 1 )( S ) tot ij 2 k i , j 12 l i

  13. AOCC method  1         2 H V r ( ) V r ( ) ( H i ) 0 r A A B B  2 t V ( r ) are the electron interactions with the target and A B , A B , Projectile. even-tempered basis   ˆ      k r     l k ( ) r N ( ) r e Y ( ) r , k 1,2,..., N k klm l k lm 13

  14.   nlm r ( ) The atomic orbital states can be obtained as       ( ) r c ( ) r nlm nk klm k The total wave function of the collision system           A B ( , ) r t a t ( ) ( , ) r t b t ( ) ( , ) r t i i j j i j The resulting first-order coupled equations for the amplitude a i (t) and b j (t) are      i A ( SB ) HA KB      † i B ( S A ) KA HB 14

  15. The above equations can be solved under the initial conditions:      a ( ) , b ( ) 0 i 1 i j The cross sections for excitation and charge transfer are calculated as:       2 2 | b ( ) | bdb cx j , j 0 15

  16. Outline • Motivation • Theoretical method • Results and discussions H + -Be + →H( nl )+Be 2+ →H + +Be + ( 1s 2 nl ), n>2 →H + +Be 2+ (1s 2 )+e Be 3+ -Li→Be 2+ +Li + • Summary 16

  17. H + + Be + ( 1s 2 2l )→H( nl ) + Be 2+ /H + + Be + ( 1s 2 nl ),n>2 Adiabatic potential curves for (BeH) 2+ system The solid and dotted lines represent the and states, respectively. 2  2  17

  18. Radial and rotational coupling matrix elements for BeH 2+ 18

  19. Cross section results: Be + (1s 2 2s) initial state 24 21 2 ) 18 -16 cm 15 Cross section (10 12 9 present QMOCC present AOCC 6 Bransden 3 0 -2 -1 0 1 2 10 10 10 10 10 Energy (keV/u) Total electron capture cross section for H + -Be + (2s) collisions. 19

  20. n- and nl -partial electron capture cross section for H + -Be + (2s) collisions 0 10 2s total 1 10 2p n=1 2 ) 2 ) 3s -16 cm -16 cm -1 n=2 10 3p n=3 3d Cross section (10 Cross section (10 0 n=4 10 -2 10 -1 10 -3 10 -2 10 -4 10 -3 10 0 1 2 10 10 10 0 1 2 10 10 10 Energy (keV/u) Energy (keV/u) -2 10 2 ) -16 cm Cross section (10 -3 10 4s -4 10 4p 4d 4f 20 -5 10 0 1 2 10 10 10 Energy (keV/u)

  21. 1 10 2 ) Cross section (10 -16 cm 2 ) -16 cm -1 10 0 10 Cross section (10 -1 10 4s present AOCC present QMOCC -2 4p 10 2p -2 2p 10 4d 3s 3s 4f 3p 3p 3d 3d -3 10 0.01 0.1 1 10 100 1 10 100 Energy (keV/u) Energy (keV/u) Cross sections for excitation to 2p, 3l and 4l states of Be + in H + -Be + (1s 2 2s) collisions. 21

  22. 0 10 2 ) -16 cm -1 Cross section (10 10 -2 10 ionization -3 10 1 10 100 Energy (keV/u) AOCC ionization cross sections in H + -Be + (1s 2 2s) collisions. 22

  23. Cross section results: Be + (1s 2 2p) initial state 1 10 2 ) 0 10 -16 cm Cross section (10 -1 10 QMOCC total -2 10 AOCC total n=1 -3 10 n=2 n=3 n=4 -4 10 -2 -1 0 1 2 10 10 10 10 10 Energy (keV/u) Total and n-shell AOCC and 1s QMOCC electron capture cross sections 23 in H + -Be + (1s 2 2p) collisions.

  24. -1 10 0 10 2 ) -16 cm 2 ) -2 10 -16 cm -1 10 Cross section (10 Cross section (10 -3 10 -2 10 2s 4s 2p 4p -4 10 3s -3 4d 10 3p 4f 3d -4 -5 10 10 0 1 2 0 1 2 10 10 10 10 10 10 Energy (keV/u) Energy (keV/u) AOCC cross sections for electron capture to 4 l states of H in H + -Be + (1s 2 2p) collisions. 24

  25. 1 0 10 10 4s Cross section (10 -16 cm 2 ) 4p 2 ) 0 10 -16 cm 4d 4f Cross section (10 -1 -1 10 10 QMOCC AOCC -2 2s 2s 10 3s 3s 3p 3p 3d 3d -3 -2 10 10 0 1 2 -2 -1 0 1 2 10 10 10 10 10 10 10 10 Energy (keV/u) Energy (keV/u) Cross sections for excitation to the 2 s and AOCC cross sections for excitation to 3 l states of Be + in H + -Be + ( 1s 2 2p ) collisions. 4l states of Be + in H + -Be + ( 1s 2 2p ) collisions. 25

  26. 0 10 2 ) -16 cm Cross section (10 -1 10 -2 10 ionization -3 10 1 10 100 Energy (keV/u) AOCC ionization cross section H + -Be + ( 1s 2 2p ) collisions. 26

  27. Table 1. Asymptotic separated-atom energies of BeLi 3+ molecule. Energy (eV) Molecular state Asymptotic atomic state Expt. [13] Theor. error 1 3 Σ Be 2+ (1 s 2 s )[ 3 S]+Li + -29.913 -29.676 0.237 2 1 Σ Be 2+ (1 s 2 s )[ 1 S]+Li + -26.854 -26.724 0.13 2 3 Σ, 1 3 Π Be 2+ (1 s 2 p )[ 3 P]+Li + -26.583 -26.363 0.22 3 1 Σ, 1 1 Π Be 2+ (1 s 2 p )[ 1 P]+Li + -24.836 -24.715 0.121 3 3 Σ Be 2+ (1 s 3 s )[ 3 S]+Li + -9.495 -9.363 0.132 4 1 Σ Be 2+ (1 s 3 s )[ 1 S]+Li + -8.687 -8.634 0.053 4 3 Σ, 2 3 Π Be 2+ (1 s 3 p )[ 3 P]+Li + -8.613 -8.591 0.022 5 3 Σ, 3 3 Π, 1 3 Δ Be 2+ (1 s 3 d )[ 3 D]+Li + -8.231 -8.155 0.076 5 1 Σ, 2 1 Π, 1 1 Δ Be 2+ (1 s 3 d )[ 1 D]+Li + -8.221 -8.150 0.071 6 1 Σ, 3 1 Π Be 2+ (1 s 3 p )[ 1 P]+Li + -8.106 -8.052 0.054 6 3 Σ Be 2+ (1 s 4 s )[ 3 S]+Li + -2.786 -2.579 0.207 7 1 Σ Be 2+ (1 s 4 s )[ 1 S]+Li + -2.450 -2.347 0.103 7 3 Σ, 4 3 Π Be 2+ (1 s 4 p )[ 3 P]+Li + -2.429 -2.327 0.102 8 3 Σ, 5 3 Π, 2 3 Δ Be 2+ (1 s 4 d )[ 3 D]+Li + -2.271 -2.151 0.12 8 1 Σ, 4 1 Π, 2 1 Δ Be 2+ (1 s 4 d )[ 1 D]+Li + -2.266 -2.148 0.108 9 1 Σ, 5 1 Π, 3 1 Δ Be 2+ (1 s 4 f )[ 1 F]+Li + -2.263 -2.138 0.125 9 3 Σ, 6 3 Π, 3 3 Δ Be 2+ (1 s 4 f )[ 3 F]+Li + -2.263 -2.138 0.125 10 1 Σ, 6 1 Π Be 2+ (1 s 4 p )[ 1 P]+Li + -2.224 -2.084 0.140 11 1 Σ, 10 3 Ʃ Be 3+ (1 s )+Li(2s) 0 0 0 27 12 1 Ʃ, 11 3 Ʃ, 7 1,3 П Be 3+ (1s)+Li(2p) 1.848 1.848 0

  28. Be 3+ -Li Adiabatic energies of BeLi 3+ molecular ion. The solid, dashed, dotted and dash-dotted lines represent the Σ, Π, Δ and Φ states, respectively. (a) singlet states; (b) triplet states. 28

  29. Radial and rotational coupling matrix elements for the singlet and triplet states. 29

  30. Total electron capture cross section in Be 3+ -Li(2s) collisions. 30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend