bernstein sato polynomials and generalizations
play

Bernstein-Sato polynomials and generalizations Nero Budur (KU - PowerPoint PPT Presentation

Bernstein-Sato polynomials and generalizations Nero Budur (KU Leuven) Summer school Algebra, Algorithms, and Algebraic Analysis , Rolduc Abbey, Netherlands September 2-6, 2013 Nero Budur (KU Leuven) Bernstein-Sato polynomials and


  1. � � � � � Natural functors on constr. sh. extend to derived functors on D b c ( X ) . E.g. p : X → Y gives Rp ∗ s.t. exact 0 → F q 1 → F q 2 → F q 3 → 0 , gives exact long sequence .. → H i ( Rp ∗ F q 1 ) → H i ( Rp ∗ F q 2 ) → H i ( Rp ∗ F q 3 ) → H i + 1 ( Rp ∗ F q 1 ) → .. Let f : X → C holom. fc. Consider p f − 1 ( 0 ) � � � X X × C ˜ C ∗ i f C ∗ ˜ � � C C ∗ • Nearby cycles functor ψ f := i ∗ Rp ∗ p ∗ : D b c ( X ) → D b c ( f − 1 ( 0 )) . Eigenspace decomposition: ψ f = ⊕ λ ψ f ,λ . Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  2. • [Deligne]: X = C -anal. mfd., f : X → C holomorphic fc. Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  3. • [Deligne]: X = C -anal. mfd., f : X → C holomorphic fc. ⇒ H i ( F f , x , C ) λ = H i ( i ∗ x ψ f ,λ C X ) . Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  4. • [Deligne]: X = C -anal. mfd., f : X → C holomorphic fc. ⇒ H i ( F f , x , C ) λ = H i ( i ∗ x ψ f ,λ C X ) . D X = sheaf of alg. diff. operators Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  5. • [Deligne]: X = C -anal. mfd., f : X → C holomorphic fc. ⇒ H i ( F f , x , C ) λ = H i ( i ∗ x ψ f ,λ C X ) . D X = sheaf of alg. diff. operators = locally A n ( C ) . Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  6. • [Deligne]: X = C -anal. mfd., f : X → C holomorphic fc. ⇒ H i ( F f , x , C ) λ = H i ( i ∗ x ψ f ,λ C X ) . D X = sheaf of alg. diff. operators = locally A n ( C ) . D b rh ( D X ) = bdd der cat of complexes of D X -mods with regular holonomic cohomology. Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  7. • [Deligne]: X = C -anal. mfd., f : X → C holomorphic fc. ⇒ H i ( F f , x , C ) λ = H i ( i ∗ x ψ f ,λ C X ) . D X = sheaf of alg. diff. operators = locally A n ( C ) . D b rh ( D X ) = bdd der cat of complexes of D X -mods with regular holonomic cohomology. • [Malgrange, Kashiwara, Mebkhout]: Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  8. • [Deligne]: X = C -anal. mfd., f : X → C holomorphic fc. ⇒ H i ( F f , x , C ) λ = H i ( i ∗ x ψ f ,λ C X ) . D X = sheaf of alg. diff. operators = locally A n ( C ) . D b rh ( D X ) = bdd der cat of complexes of D X -mods with regular holonomic cohomology. • [Malgrange, Kashiwara, Mebkhout]: Let X be smooth C alg. variety of dim n. Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  9. • [Deligne]: X = C -anal. mfd., f : X → C holomorphic fc. ⇒ H i ( F f , x , C ) λ = H i ( i ∗ x ψ f ,λ C X ) . D X = sheaf of alg. diff. operators = locally A n ( C ) . D b rh ( D X ) = bdd der cat of complexes of D X -mods with regular holonomic cohomology. • [Malgrange, Kashiwara, Mebkhout]: Let X be smooth C alg. variety of dim n. Then ∃ DR X : D b rh ( D X ) ↔ D b c ( X ) Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  10. • [Deligne]: X = C -anal. mfd., f : X → C holomorphic fc. ⇒ H i ( F f , x , C ) λ = H i ( i ∗ x ψ f ,λ C X ) . D X = sheaf of alg. diff. operators = locally A n ( C ) . D b rh ( D X ) = bdd der cat of complexes of D X -mods with regular holonomic cohomology. • [Malgrange, Kashiwara, Mebkhout]: Let X be smooth C alg. variety of dim n. Then ∃ DR X : D b rh ( D X ) ↔ D b c ( X ) s.t. if M = D X -mod, then DR X M = (Ω q X ⊗ O X M )[ n ] . Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  11. • [Deligne]: X = C -anal. mfd., f : X → C holomorphic fc. ⇒ H i ( F f , x , C ) λ = H i ( i ∗ x ψ f ,λ C X ) . D X = sheaf of alg. diff. operators = locally A n ( C ) . D b rh ( D X ) = bdd der cat of complexes of D X -mods with regular holonomic cohomology. • [Malgrange, Kashiwara, Mebkhout]: Let X be smooth C alg. variety of dim n. Then ∃ DR X : D b rh ( D X ) ↔ D b c ( X ) s.t. if M = D X -mod, then DR X M = (Ω q X ⊗ O X M )[ n ] . So ∃ D -modules counterpart of ψ f : Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  12. • [Deligne]: X = C -anal. mfd., f : X → C holomorphic fc. ⇒ H i ( F f , x , C ) λ = H i ( i ∗ x ψ f ,λ C X ) . D X = sheaf of alg. diff. operators = locally A n ( C ) . D b rh ( D X ) = bdd der cat of complexes of D X -mods with regular holonomic cohomology. • [Malgrange, Kashiwara, Mebkhout]: Let X be smooth C alg. variety of dim n. Then ∃ DR X : D b rh ( D X ) ↔ D b c ( X ) s.t. if M = D X -mod, then DR X M = (Ω q X ⊗ O X M )[ n ] . So ∃ D -modules counterpart of ψ f : via V -filtration, to define soon. Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  13. Let i f : X → X × C be x �→ ( x , f ( x )) . Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  14. Let i f : X → X × C be x �→ ( x , f ( x )) . • [Malgrange, Kashiwara]: Let X be smooth C alg. variety of dim n Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  15. Let i f : X → X × C be x �→ ( x , f ( x )) . • [Malgrange, Kashiwara]: Let X be smooth C alg. variety of dim n and f : X → C a regular function. Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  16. Let i f : X → X × C be x �→ ( x , f ( x )) . • [Malgrange, Kashiwara]: Let X be smooth C alg. variety of dim n and f : X → C a regular function. For α ∈ ( 0 , 1 ] , Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  17. Let i f : X → X × C be x �→ ( x , f ( x )) . • [Malgrange, Kashiwara]: Let X be smooth C alg. variety of dim n and f : X → C a regular function. For α ∈ ( 0 , 1 ] , ψ f ,λ C X [ n − 1 ] = DR X ( Gr α V ( i f ) + O X ) Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  18. Let i f : X → X × C be x �→ ( x , f ( x )) . • [Malgrange, Kashiwara]: Let X be smooth C alg. variety of dim n and f : X → C a regular function. For α ∈ ( 0 , 1 ] , ψ f ,λ C X [ n − 1 ] = DR X ( Gr α V ( i f ) + O X ) where λ = exp ( − 2 π i α ) Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  19. Let i f : X → X × C be x �→ ( x , f ( x )) . • [Malgrange, Kashiwara]: Let X be smooth C alg. variety of dim n and f : X → C a regular function. For α ∈ ( 0 , 1 ] , ψ f ,λ C X [ n − 1 ] = DR X ( Gr α V ( i f ) + O X ) where λ = exp ( − 2 π i α ) and ( i f ) + is the D -module direct image. Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  20. Let i f : X → X × C be x �→ ( x , f ( x )) . • [Malgrange, Kashiwara]: Let X be smooth C alg. variety of dim n and f : X → C a regular function. For α ∈ ( 0 , 1 ] , ψ f ,λ C X [ n − 1 ] = DR X ( Gr α V ( i f ) + O X ) where λ = exp ( − 2 π i α ) and ( i f ) + is the D -module direct image. Next: V -filtrations, generalized Bernstein-Sato polynomials, more geometry. Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  21. V -filtration Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  22. V -filtration X = C n , Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  23. V -filtration X = C n , D X = A n ( C ) , Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  24. V -filtration X = C n , D X = A n ( C ) , Y = X × C r , Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  25. V -filtration X = C n , D X = A n ( C ) , Y = X × C r , O X = C [ x ] , Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  26. V -filtration X = C n , D X = A n ( C ) , Y = X × C r , O X = C [ x ] , O Y = C [ x , t ] , Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  27. V -filtration X = C n , D X = A n ( C ) , Y = X × C r , O X = C [ x ] , O Y = C [ x , t ] , with x = x 1 , . . . , x n , Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  28. V -filtration X = C n , D X = A n ( C ) , Y = X × C r , O X = C [ x ] , O Y = C [ x , t ] , with x = x 1 , . . . , x n , t = t 1 , . . . , t r . Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  29. V -filtration X = C n , D X = A n ( C ) , Y = X × C r , O X = C [ x ] , O Y = C [ x , t ] , with x = x 1 , . . . , x n , t = t 1 , . . . , t r . So the ideal I ⊂ O Y of X × 0 in Y is generated by t . Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  30. V -filtration X = C n , D X = A n ( C ) , Y = X × C r , O X = C [ x ] , O Y = C [ x , t ] , with x = x 1 , . . . , x n , t = t 1 , . . . , t r . So the ideal I ⊂ O Y of X × 0 in Y is generated by t . So D X = O X [ ∂ x ] , Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  31. V -filtration X = C n , D X = A n ( C ) , Y = X × C r , O X = C [ x ] , O Y = C [ x , t ] , with x = x 1 , . . . , x n , t = t 1 , . . . , t r . So the ideal I ⊂ O Y of X × 0 in Y is generated by t . So D X = O X [ ∂ x ] , D Y = O Y [ ∂ x , ∂ t ] . Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  32. V -filtration X = C n , D X = A n ( C ) , Y = X × C r , O X = C [ x ] , O Y = C [ x , t ] , with x = x 1 , . . . , x n , t = t 1 , . . . , t r . So the ideal I ⊂ O Y of X × 0 in Y is generated by t . So D X = O X [ ∂ x ] , D Y = O Y [ ∂ x , ∂ t ] . • Filtration V along X × 0 on D Y : Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  33. V -filtration X = C n , D X = A n ( C ) , Y = X × C r , O X = C [ x ] , O Y = C [ x , t ] , with x = x 1 , . . . , x n , t = t 1 , . . . , t r . So the ideal I ⊂ O Y of X × 0 in Y is generated by t . So D X = O X [ ∂ x ] , D Y = O Y [ ∂ x , ∂ t ] . • Filtration V along X × 0 on D Y : V j D Y = { P ∈ D Y | PI i ⊂ I i + j for all i ∈ Z } , Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  34. V -filtration X = C n , D X = A n ( C ) , Y = X × C r , O X = C [ x ] , O Y = C [ x , t ] , with x = x 1 , . . . , x n , t = t 1 , . . . , t r . So the ideal I ⊂ O Y of X × 0 in Y is generated by t . So D X = O X [ ∂ x ] , D Y = O Y [ ∂ x , ∂ t ] . • Filtration V along X × 0 on D Y : V j D Y = { P ∈ D Y | PI i ⊂ I i + j for all i ∈ Z } , with j ∈ Z and I i = O Y for i ≤ 0. Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  35. V -filtration X = C n , D X = A n ( C ) , Y = X × C r , O X = C [ x ] , O Y = C [ x , t ] , with x = x 1 , . . . , x n , t = t 1 , . . . , t r . So the ideal I ⊂ O Y of X × 0 in Y is generated by t . So D X = O X [ ∂ x ] , D Y = O Y [ ∂ x , ∂ t ] . • Filtration V along X × 0 on D Y : V j D Y = { P ∈ D Y | PI i ⊂ I i + j for all i ∈ Z } , with j ∈ Z and I i = O Y for i ≤ 0. So V j D Y is generated over D X by the monomials t β ∂ γ t with | β | − | γ | ≥ j . Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  36. Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  37. • Let M be a fin. gen. D Y -module. Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  38. • Let M be a fin. gen. D Y -module. The filtration V along X × 0 on M is Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  39. • Let M be a fin. gen. D Y -module. The filtration V along X × 0 on M is an exhaustive decreasing filtr. of fin. gen. V 0 D Y -submods V α M s.t.: Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  40. • Let M be a fin. gen. D Y -module. The filtration V along X × 0 on M is an exhaustive decreasing filtr. of fin. gen. V 0 D Y -submods V α M s.t.: (i) { V α M } α is indexed left-continuously and discretely by rational numbers, Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  41. • Let M be a fin. gen. D Y -module. The filtration V along X × 0 on M is an exhaustive decreasing filtr. of fin. gen. V 0 D Y -submods V α M s.t.: (i) { V α M } α is indexed left-continuously and discretely by rational numbers, i.e. V α M = ∩ β<α V β M ; Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  42. • Let M be a fin. gen. D Y -module. The filtration V along X × 0 on M is an exhaustive decreasing filtr. of fin. gen. V 0 D Y -submods V α M s.t.: (i) { V α M } α is indexed left-continuously and discretely by rational numbers, i.e. V α M = ∩ β<α V β M ; (ii) ( V i D Y )( V α M ) ⊂ V α + i M ; Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  43. • Let M be a fin. gen. D Y -module. The filtration V along X × 0 on M is an exhaustive decreasing filtr. of fin. gen. V 0 D Y -submods V α M s.t.: (i) { V α M } α is indexed left-continuously and discretely by rational numbers, i.e. V α M = ∩ β<α V β M ; (ii) ( V i D Y )( V α M ) ⊂ V α + i M ; j t j V α M = V α + 1 M for α ≫ 0; (iii) � Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  44. • Let M be a fin. gen. D Y -module. The filtration V along X × 0 on M is an exhaustive decreasing filtr. of fin. gen. V 0 D Y -submods V α M s.t.: (i) { V α M } α is indexed left-continuously and discretely by rational numbers, i.e. V α M = ∩ β<α V β M ; (ii) ( V i D Y )( V α M ) ⊂ V α + i M ; j t j V α M = V α + 1 M for α ≫ 0; (iii) � j ∂ t j t j − α on Gr α V M = V α M / V >α M is nilpotent. (iv) the action of � Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  45. • Let M be a fin. gen. D Y -module. The filtration V along X × 0 on M is an exhaustive decreasing filtr. of fin. gen. V 0 D Y -submods V α M s.t.: (i) { V α M } α is indexed left-continuously and discretely by rational numbers, i.e. V α M = ∩ β<α V β M ; (ii) ( V i D Y )( V α M ) ⊂ V α + i M ; j t j V α M = V α + 1 M for α ≫ 0; (iii) � j ∂ t j t j − α on Gr α V M = V α M / V >α M is nilpotent. (iv) the action of � • [Malgrange, Kashiwara]: The filtration V along X × 0 on M exists if M is regular holonomic and quasi-unipotent. Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  46. • Let M be a fin. gen. D Y -module. The filtration V along X × 0 on M is an exhaustive decreasing filtr. of fin. gen. V 0 D Y -submods V α M s.t.: (i) { V α M } α is indexed left-continuously and discretely by rational numbers, i.e. V α M = ∩ β<α V β M ; (ii) ( V i D Y )( V α M ) ⊂ V α + i M ; j t j V α M = V α + 1 M for α ≫ 0; (iii) � j ∂ t j t j − α on Gr α V M = V α M / V >α M is nilpotent. (iv) the action of � • [Malgrange, Kashiwara]: The filtration V along X × 0 on M exists if M is regular holonomic and quasi-unipotent. Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations We see later how the proof of existence reduces to the case r 1.

  47. Lemma: V q M along X × 0 is unique if it exists. Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  48. Lemma: V q M along X × 0 is unique if it exists. See proof in the notes. Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  49. Lemma: V q M along X × 0 is unique if it exists. See proof in the notes. • For m ∈ M , the Bernstein-Sato polynomial b m ( s ) of m is Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  50. Lemma: V q M along X × 0 is unique if it exists. See proof in the notes. • For m ∈ M , the Bernstein-Sato polynomial b m ( s ) of m is the non-zero monic minimal polynomial of the action of s = − � j ∂ t j t j on V 0 D Y · m / V 1 D Y · m . Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  51. Lemma: V q M along X × 0 is unique if it exists. See proof in the notes. • For m ∈ M , the Bernstein-Sato polynomial b m ( s ) of m is the non-zero monic minimal polynomial of the action of s = − � j ∂ t j t j on V 0 D Y · m / V 1 D Y · m . • [Sabbah]: If the filtration V along X × 0 on M exists, then Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  52. Lemma: V q M along X × 0 is unique if it exists. See proof in the notes. • For m ∈ M , the Bernstein-Sato polynomial b m ( s ) of m is the non-zero monic minimal polynomial of the action of s = − � j ∂ t j t j on V 0 D Y · m / V 1 D Y · m . • [Sabbah]: If the filtration V along X × 0 on M exists, then b m ( s ) exists for all m ∈ M, and has all roots rational. Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  53. Lemma: V q M along X × 0 is unique if it exists. See proof in the notes. • For m ∈ M , the Bernstein-Sato polynomial b m ( s ) of m is the non-zero monic minimal polynomial of the action of s = − � j ∂ t j t j on V 0 D Y · m / V 1 D Y · m . • [Sabbah]: If the filtration V along X × 0 on M exists, then b m ( s ) exists for all m ∈ M, and has all roots rational. Moreover, V α M = { m ∈ M | α ≤ c if b m ( − c ) = 0 } . Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  54. Lemma: V q M along X × 0 is unique if it exists. See proof in the notes. • For m ∈ M , the Bernstein-Sato polynomial b m ( s ) of m is the non-zero monic minimal polynomial of the action of s = − � j ∂ t j t j on V 0 D Y · m / V 1 D Y · m . • [Sabbah]: If the filtration V along X × 0 on M exists, then b m ( s ) exists for all m ∈ M, and has all roots rational. Moreover, V α M = { m ∈ M | α ≤ c if b m ( − c ) = 0 } . See proof in the notes. Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  55. Next: geometry behind the V -filtration. Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  56. Next: geometry behind the V -filtration. Let X = C n , f = ( f 1 , . . . , f r ) , f i ∈ C [ x ] = O X , Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  57. Next: geometry behind the V -filtration. Let X = C n , f = ( f 1 , . . . , f r ) , f i ∈ C [ x ] = O X , i f : X → X × C r = Y given by x �→ ( x , f ( x )) . Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  58. Next: geometry behind the V -filtration. Let X = C n , f = ( f 1 , . . . , f r ) , f i ∈ C [ x ] = O X , i f : X → X × C r = Y given by x �→ ( x , f ( x )) . Let t = ( t 1 , . . . , t r ) be the coords of C r . Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  59. Next: geometry behind the V -filtration. Let X = C n , f = ( f 1 , . . . , f r ) , f i ∈ C [ x ] = O X , i f : X → X × C r = Y given by x �→ ( x , f ( x )) . Let t = ( t 1 , . . . , t r ) be the coords of C r . Let ( i f ) + O X = D -mod direct image Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  60. Next: geometry behind the V -filtration. Let X = C n , f = ( f 1 , . . . , f r ) , f i ∈ C [ x ] = O X , i f : X → X × C r = Y given by x �→ ( x , f ( x )) . Let t = ( t 1 , . . . , t r ) be the coords of C r . Let ( i f ) + O X = D -mod direct image = O X ⊗ C C [ ∂ t ] Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  61. Next: geometry behind the V -filtration. Let X = C n , f = ( f 1 , . . . , f r ) , f i ∈ C [ x ] = O X , i f : X → X × C r = Y given by x �→ ( x , f ( x )) . Let t = ( t 1 , . . . , t r ) be the coords of C r . Let ( i f ) + O X = D -mod direct image = O X ⊗ C C [ ∂ t ] s.t. for g , h ∈ O X , Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  62. Next: geometry behind the V -filtration. Let X = C n , f = ( f 1 , . . . , f r ) , f i ∈ C [ x ] = O X , i f : X → X × C r = Y given by x �→ ( x , f ( x )) . Let t = ( t 1 , . . . , t r ) be the coords of C r . Let ( i f ) + O X = D -mod direct image = O X ⊗ C C [ ∂ t ] s.t. for g , h ∈ O X , g ( h ⊗ ∂ ν t ) = gh ⊗ ∂ ν t , Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  63. Next: geometry behind the V -filtration. Let X = C n , f = ( f 1 , . . . , f r ) , f i ∈ C [ x ] = O X , i f : X → X × C r = Y given by x �→ ( x , f ( x )) . Let t = ( t 1 , . . . , t r ) be the coords of C r . Let ( i f ) + O X = D -mod direct image = O X ⊗ C C [ ∂ t ] s.t. for g , h ∈ O X , ∂ f j g ( h ⊗ ∂ ν t ) = gh ⊗ ∂ ν t , ∂ x i ( h ⊗ ∂ ν t ) = ∂ x i h ⊗ ∂ ν ∂ x i h ⊗ ∂ t j ∂ ν t − � t , j Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  64. Next: geometry behind the V -filtration. Let X = C n , f = ( f 1 , . . . , f r ) , f i ∈ C [ x ] = O X , i f : X → X × C r = Y given by x �→ ( x , f ( x )) . Let t = ( t 1 , . . . , t r ) be the coords of C r . Let ( i f ) + O X = D -mod direct image = O X ⊗ C C [ ∂ t ] s.t. for g , h ∈ O X , ∂ f j g ( h ⊗ ∂ ν t ) = gh ⊗ ∂ ν t , ∂ x i ( h ⊗ ∂ ν t ) = ∂ x i h ⊗ ∂ ν ∂ x i h ⊗ ∂ t j ∂ ν t − � t , j ∂ t j ( h ⊗ ∂ ν t ) = h ⊗ ∂ t j ∂ ν t , Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  65. Next: geometry behind the V -filtration. Let X = C n , f = ( f 1 , . . . , f r ) , f i ∈ C [ x ] = O X , i f : X → X × C r = Y given by x �→ ( x , f ( x )) . Let t = ( t 1 , . . . , t r ) be the coords of C r . Let ( i f ) + O X = D -mod direct image = O X ⊗ C C [ ∂ t ] s.t. for g , h ∈ O X , ∂ f j g ( h ⊗ ∂ ν t ) = gh ⊗ ∂ ν t , ∂ x i ( h ⊗ ∂ ν t ) = ∂ x i h ⊗ ∂ ν ∂ x i h ⊗ ∂ t j ∂ ν t − � t , j t − ν j h ⊗ ( ∂ ν − e j ∂ t j ( h ⊗ ∂ ν t ) = h ⊗ ∂ t j ∂ ν t , t j ( h ⊗ ∂ ν t ) = f j h ⊗ ∂ ν ) , t Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  66. Next: geometry behind the V -filtration. Let X = C n , f = ( f 1 , . . . , f r ) , f i ∈ C [ x ] = O X , i f : X → X × C r = Y given by x �→ ( x , f ( x )) . Let t = ( t 1 , . . . , t r ) be the coords of C r . Let ( i f ) + O X = D -mod direct image = O X ⊗ C C [ ∂ t ] s.t. for g , h ∈ O X , ∂ f j g ( h ⊗ ∂ ν t ) = gh ⊗ ∂ ν t , ∂ x i ( h ⊗ ∂ ν t ) = ∂ x i h ⊗ ∂ ν ∂ x i h ⊗ ∂ t j ∂ ν t − � t , j t − ν j h ⊗ ( ∂ ν − e j ∂ t j ( h ⊗ ∂ ν t ) = h ⊗ ∂ t j ∂ ν t , t j ( h ⊗ ∂ ν t ) = f j h ⊗ ∂ ν ) , t Facts: O X = reg. holon. D X -mod Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  67. Next: geometry behind the V -filtration. Let X = C n , f = ( f 1 , . . . , f r ) , f i ∈ C [ x ] = O X , i f : X → X × C r = Y given by x �→ ( x , f ( x )) . Let t = ( t 1 , . . . , t r ) be the coords of C r . Let ( i f ) + O X = D -mod direct image = O X ⊗ C C [ ∂ t ] s.t. for g , h ∈ O X , ∂ f j g ( h ⊗ ∂ ν t ) = gh ⊗ ∂ ν t , ∂ x i ( h ⊗ ∂ ν t ) = ∂ x i h ⊗ ∂ ν ∂ x i h ⊗ ∂ t j ∂ ν t − � t , j t − ν j h ⊗ ( ∂ ν − e j ∂ t j ( h ⊗ ∂ ν t ) = h ⊗ ∂ t j ∂ ν t , t j ( h ⊗ ∂ ν t ) = f j h ⊗ ∂ ν ) , t Facts: O X = reg. holon. D X -mod ⇒ ( i f ) + O X = reg. holon. quasi-unip. D Y -mod. Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  68. Next: geometry behind the V -filtration. Let X = C n , f = ( f 1 , . . . , f r ) , f i ∈ C [ x ] = O X , i f : X → X × C r = Y given by x �→ ( x , f ( x )) . Let t = ( t 1 , . . . , t r ) be the coords of C r . Let ( i f ) + O X = D -mod direct image = O X ⊗ C C [ ∂ t ] s.t. for g , h ∈ O X , ∂ f j g ( h ⊗ ∂ ν t ) = gh ⊗ ∂ ν t , ∂ x i ( h ⊗ ∂ ν t ) = ∂ x i h ⊗ ∂ ν ∂ x i h ⊗ ∂ t j ∂ ν t − � t , j t − ν j h ⊗ ( ∂ ν − e j ∂ t j ( h ⊗ ∂ ν t ) = h ⊗ ∂ t j ∂ ν t , t j ( h ⊗ ∂ ν t ) = f j h ⊗ ∂ ν ) , t Facts: O X = reg. holon. D X -mod ⇒ ( i f ) + O X = reg. holon. quasi-unip. D Y -mod. So ∃ V q ( i f ) + O X along X × 0. Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  69. • When r = 1, M-K thm says ψ f ,λ C X [ n − 1 ] = DR X ( Gr α V ( i f ) + O X ) . Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

  70. • When r = 1, M-K thm says ψ f ,λ C X [ n − 1 ] = DR X ( Gr α V ( i f ) + O X ) . Moreover, s = − ∂ t t on V > 0 ( i f ) + O X / V 1 ( i f ) + O X corresponds to logarithm of unipotent part T u of monodromy T = T s T u . Nero Budur (KU Leuven) Bernstein-Sato polynomials and generalizations

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend