remarks on g del s incomplentess theorems
play

Remarks on Gdels Incomplentess Theorems SATO Kentaro * - PowerPoint PPT Presentation

Remarks on Gdels Incomplentess Theorems SATO Kentaro * sato@inf.unibe.ch SGSLPS Autumn 2016 - *His research is supported by John Templeton Foundation


  1. Recursive Axiomatizability A first order theory T is recursively axiomatizable iff • there is Γ such that • Γ ⊢ ϕ ⇐ ⇒ T ⊢ ϕ for any ϕ ∈ L T and • { � � | ϕ ∈ Γ } is decidable; ϕ – p. 14

  2. Recursive Axiomatizability A first order theory T is recursively axiomatizable iff • there is Γ such that • Γ ⊢ ϕ ⇐ ⇒ T ⊢ ϕ for any ϕ ∈ L T and • { � � | ϕ ∈ Γ } is decidable; ϕ and/or • there is Γ such that • Γ ⊢ ϕ ⇐ ⇒ T ⊢ ϕ for any ϕ ∈ L T and • { � � | ϕ ∈ Γ } is semi-decidable; ϕ – p. 14

  3. Recursive Axiomatizability A first order theory T is recursively axiomatizable iff • there is Γ such that • Γ ⊢ ϕ ⇐ ⇒ T ⊢ ϕ for any ϕ ∈ L T and • { � � | ϕ ∈ Γ } is decidable; ϕ and/or • there is Γ such that • Γ ⊢ ϕ ⇐ ⇒ T ⊢ ϕ for any ϕ ∈ L T and • { � � | ϕ ∈ Γ } is semi-decidable; ϕ and/or • { � � | T ⊢ ϕ } is semi-decidable. ϕ – p. 14

  4. Recursive Axiomatizability A first order theory T is recursively axiomatizable iff • there is Γ such that • Γ ⊢ ϕ ⇐ ⇒ T ⊢ ϕ for any ϕ ∈ L T and • { � � | ϕ ∈ Γ } is decidable; ϕ and/or • there is Γ such that • Γ ⊢ ϕ ⇐ ⇒ T ⊢ ϕ for any ϕ ∈ L T and • { � � | ϕ ∈ Γ } is semi-decidable; ϕ and/or • { � � | T ⊢ ϕ } is semi-decidable. ϕ Th( N ) = { ϕ ∈ L PA | N | = ϕ } is negation complete. – p. 14

  5. Craig’s Theorem If { � � | T ⊢ ϕ } is semi-decidable, ϕ then there is Γ such that • Γ ⊢ ϕ ⇐ ⇒ T ⊢ ϕ for any ϕ ∈ L T and • { � � | ϕ ∈ Γ } is decidable ϕ – p. 15

  6. Craig’s Theorem If { � � | T ⊢ ϕ } is semi-decidable, ϕ then there is Γ such that • Γ ⊢ ϕ ⇐ ⇒ T ⊢ ϕ for any ϕ ∈ L T and • { � � | ϕ ∈ Γ } is decidable ϕ (Proof) Take a recursive predicate R such that T ⊢ ϕ ⇐ ⇒ ∃ nR ( � � , n ) for any ϕ ∈ L T . ϕ – p. 15

  7. Craig’s Theorem If { � � | T ⊢ ϕ } is semi-decidable, ϕ then there is Γ such that • Γ ⊢ ϕ ⇐ ⇒ T ⊢ ϕ for any ϕ ∈ L T and • { � � | ϕ ∈ Γ } is decidable ϕ (Proof) Take a recursive predicate R such that T ⊢ ϕ ⇐ ⇒ ∃ nR ( � � , n ) for any ϕ ∈ L T . ϕ Define the following recursive set of axioms Γ = { ψ | ( ∃ n, � ψ � )( R ( � � , n ) & ψ ≡ ϕ ∧ ... ∧ ϕ ) } . ϕ � < � ϕ – p. 15

  8. Craig’s Theorem If { � � | T ⊢ ϕ } is semi-decidable, ϕ then there is Γ such that • Γ ⊢ ϕ ⇐ ⇒ T ⊢ ϕ for any ϕ ∈ L T and • { � � | ϕ ∈ Γ } is decidable ϕ (Proof) Take a recursive predicate R such that T ⊢ ϕ ⇐ ⇒ ∃ nR ( � � , n ) for any ϕ ∈ L T . ϕ Define the following recursive set of axioms Γ = { ψ | ( ∃ n, � ψ � )( R ( � � , n ) & ψ ≡ ϕ ∧ ... ∧ ϕ ) } . ϕ � < � ϕ • ψ ∈ Γ ⇒ T ⊢ ϕ & ψ ≡ ϕ ∧ ... ∧ ϕ ⇒ T ⊢ ψ ; • T ⊢ ϕ ⇒ ∃ nR ( � � , n ) ⇒ ϕ ∧ ... ∧ ϕ ∈ Γ ⇒ Γ ⊢ ϕ . ϕ � �� � n +1 – p. 15

  9. Henkin Construction Henkin’s Lemma : If Γ �⊢ ⊥ then there is maximal consistent ∆ ⊇ Γ . – p. 16

  10. Henkin Construction Henkin’s Lemma : If Γ �⊢ ⊥ then there is maximal consistent ∆ ⊇ Γ . (Proof) Let ϕ n ’s enumerate all L formulae. Define � Γ n if Γ n ∪ { ϕ n } ⊢ ⊥ Γ n +1 := Γ n ∪ { ϕ n } if Γ n ∪ { ϕ n } �⊢ ⊥ . starting from Γ 0 := Γ . Take ∆ := � n ∈ ω Γ n . � – p. 16

  11. Henkin Construction Henkin’s Lemma : If Γ �⊢ ⊥ then there is maximal consistent ∆ ⊇ Γ . (Proof) Let ϕ n ’s enumerate all L formulae. Define � Γ n if Γ n ∪ { ϕ n } ⊢ ⊥ Γ n +1 := Γ n ∪ { ϕ n } if Γ n ∪ { ϕ n } �⊢ ⊥ . starting from Γ 0 := Γ . Take ∆ := � n ∈ ω Γ n . � Note : The theory generated by ∆ is negation complete: either ϕ ∈ ∆ or ¬ ϕ ∈ ∆ holds for any ϕ ∈ L . – p. 16

  12. The Statement (4) If a first order theory T satisfies the following: • T is consistent; • T is recursively axiomatizable; • T essentially contains Robinson Arithmetic Q , then the following hold: 1st incompleteness: T is not complete. – p. 17

  13. Robinson Arithmetic Q Language (function) 0 ; S ( - ) ; + , · ; (relation) < . Axioms 1. ¬ ( S ( x ) = 0) ; 2. S ( x ) = S ( y ) → x = y ; 3. x = 0 ∨ ∃ y ( x = S ( y )) ; 4. x +0 = x ; and x + S ( y ) = S ( x + y ) ; 5. x · 0 = 0 ; and x · S ( y ) = ( x · y )+ x .; 6. x < y ↔ ∃ z ( x + S ( z ) = y ) . – p. 18

  14. Robinson Arithmetic Q Language (function) 0 ; S ( - ) ; + , · ; (relation) < . Axioms 1. ¬ ( S ( x ) = 0) ; 2. S ( x ) = S ( y ) → x = y ; 3. x = 0 ∨ ∃ y ( x = S ( y )) ; 4. x +0 = x ; and x + S ( y ) = S ( x + y ) ; 5. x · 0 = 0 ; and x · S ( y ) = ( x · y )+ x .; 6. x < y ↔ ∃ z ( x + S ( z ) = y ) . Remarks • first introduced by R. M. Robison in 1950 w/o < ; • has no induction axiom (schema). – p. 18

  15. Theories containing Q • PA extends Q by induction scheme: ϕ (0) ∧∀ x ( ϕ ( x ) → ϕ ( S ( x )) → ∀ xϕ ( x ) for ϕ ∈ L Q . – p. 19

  16. Theories containing Q • PA extends Q by induction scheme: ϕ (0) ∧∀ x ( ϕ ( x ) → ϕ ( S ( x )) → ∀ xϕ ( x ) for ϕ ∈ L Q . • IΣ n extends Q by induction for Σ 0 n formulae: 1. Σ 0 x ) | ϕ ∈ ∆ 0 n = {∃ x n ∀ x n − 1 ...Qx 1 ϕ ( � 0 } and 2. ϕ ∈ ∆ 0 0 iff all quantifiers in ϕ are bounded (i.e., of the forms ∀ x < t and ∃ x < t ). – p. 19

  17. Theories containing Q • PA extends Q by induction scheme: ϕ (0) ∧∀ x ( ϕ ( x ) → ϕ ( S ( x )) → ∀ xϕ ( x ) for ϕ ∈ L Q . • IΣ n extends Q by induction for Σ 0 n formulae: 1. Σ 0 x ) | ϕ ∈ ∆ 0 n = {∃ x n ∀ x n − 1 ...Qx 1 ϕ ( � 0 } and 2. ϕ ∈ ∆ 0 0 iff all quantifiers in ϕ are bounded (i.e., of the forms ∀ x < t and ∃ x < t ). • PRA extends Q by 1. L PRA := L Q ∪ {F | F ∈ PrimRec } ; 2. induction for quantifier-free L PRA formulae. – p. 19

  18. Theories containing Q • PA extends Q by induction scheme: ϕ (0) ∧∀ x ( ϕ ( x ) → ϕ ( S ( x )) → ∀ xϕ ( x ) for ϕ ∈ L Q . • IΣ n extends Q by induction for Σ 0 n formulae: 1. Σ 0 x ) | ϕ ∈ ∆ 0 n = {∃ x n ∀ x n − 1 ...Qx 1 ϕ ( � 0 } and 2. ϕ ∈ ∆ 0 0 iff all quantifiers in ϕ are bounded (i.e., of the forms ∀ x < t and ∃ x < t ). • PRA extends Q by 1. L PRA := L Q ∪ {F | F ∈ PrimRec } ; 2. induction for quantifier-free L PRA formulae. • ZFC extends Q ... – p. 19

  19. Theories containing Q • PA extends Q by induction scheme: ϕ (0) ∧∀ x ( ϕ ( x ) → ϕ ( S ( x )) → ∀ xϕ ( x ) for ϕ ∈ L Q . • IΣ n extends Q by induction for Σ 0 n formulae: 1. Σ 0 x ) | ϕ ∈ ∆ 0 n = {∃ x n ∀ x n − 1 ...Qx 1 ϕ ( � 0 } and 2. ϕ ∈ ∆ 0 0 iff all quantifiers in ϕ are bounded (i.e., of the forms ∀ x < t and ∃ x < t ). • PRA extends Q by 1. L PRA := L Q ∪ {F | F ∈ PrimRec } ; 2. induction for quantifier-free L PRA formulae. • ZFC extends Q ... really? in which sense? – p. 19

  20. Interpretation An interpretation I of L in L ′ consists of: • an L ′ formula υ I ( x ) , called universe; x ) of L , an L ′ formula f I ( y,� • for function f ( � x ) ; x ) of L , an L ′ formula R I ( � • for relation R ( � x ) . – p. 20

  21. Interpretation An interpretation I of L in L ′ consists of: • an L ′ formula υ I ( x ) , called universe; x ) of L , an L ′ formula f I ( y,� • for function f ( � x ) ; x ) of L , an L ′ formula R I ( � • for relation R ( � x ) . Extend I to all L -terms and L -formulae: • if t ( � x ) ≡ f ( t 1 ( � x ) , ..., t k ( � x )) , then x ) ≡ ∃ z 1 , ..., z k ( � t I ( y,� i ≤ k t iI ( z i ,� x ) ∧ f I ( y, z 1 , .., z n )) ; – p. 20

  22. Interpretation An interpretation I of L in L ′ consists of: • an L ′ formula υ I ( x ) , called universe; x ) of L , an L ′ formula f I ( y,� • for function f ( � x ) ; x ) of L , an L ′ formula R I ( � • for relation R ( � x ) . Extend I to all L -terms and L -formulae: • if t ( � x ) ≡ f ( t 1 ( � x ) , ..., t k ( � x )) , then x ) ≡ ∃ z 1 , ..., z k ( � t I ( y,� i ≤ k t iI ( z i ,� x ) ∧ f I ( y, z 1 , .., z n )) ; • if ϕ ≡ R ( t 1 ( � x ) , ..., t k ( � x )) , then ϕ I ≡ ∃ z 1 , ..., z k ( � i ≤ k t iI ( z i ,� x ) ∧ R I ( z 1 , .., z n )) ; – p. 20

  23. Interpretation An interpretation I of L in L ′ consists of: • an L ′ formula υ I ( x ) , called universe; x ) of L , an L ′ formula f I ( y,� • for function f ( � x ) ; x ) of L , an L ′ formula R I ( � • for relation R ( � x ) . Extend I to all L -terms and L -formulae: • if t ( � x ) ≡ f ( t 1 ( � x ) , ..., t k ( � x )) , then x ) ≡ ∃ z 1 , ..., z k ( � t I ( y,� i ≤ k t iI ( z i ,� x ) ∧ f I ( y, z 1 , .., z n )) ; • if ϕ ≡ R ( t 1 ( � x ) , ..., t k ( � x )) , then ϕ I ≡ ∃ z 1 , ..., z k ( � i ≤ k t iI ( z i ,� x ) ∧ R I ( z 1 , .., z n )) ; • ( ϕ ∧ ψ ) I ≡ ϕ I ∧ ψ I ; and ( ¬ ϕ ) I ≡ ¬ ϕ I ; – p. 20

  24. Interpretation An interpretation I of L in L ′ consists of: • an L ′ formula υ I ( x ) , called universe; x ) of L , an L ′ formula f I ( y,� • for function f ( � x ) ; x ) of L , an L ′ formula R I ( � • for relation R ( � x ) . Extend I to all L -terms and L -formulae: • if t ( � x ) ≡ f ( t 1 ( � x ) , ..., t k ( � x )) , then x ) ≡ ∃ z 1 , ..., z k ( � t I ( y,� i ≤ k t iI ( z i ,� x ) ∧ f I ( y, z 1 , .., z n )) ; • if ϕ ≡ R ( t 1 ( � x ) , ..., t k ( � x )) , then ϕ I ≡ ∃ z 1 , ..., z k ( � i ≤ k t iI ( z i ,� x ) ∧ R I ( z 1 , .., z n )) ; • ( ϕ ∧ ψ ) I ≡ ϕ I ∧ ψ I ; and ( ¬ ϕ ) I ≡ ¬ ϕ I ; • ( ∀ yϕ ( y )) I ≡ ∀ y ( υ I ( y ) → ϕ ( y ) I ) . – p. 20

  25. Interpretation 2 Given an interpretation I of L in L ′ . • I is an interpretation in an L ′ theory T ′ iff 1. T ′ ⊢ ∃ xυ I ( x ) ; 2. T ′ ⊢ ∀ � x ) → ∃ ! y ( υ I ( y ) ∧ f I ( y,� x ( υ I ( � x ))) . – p. 21

  26. Interpretation 2 Given an interpretation I of L in L ′ . • I is an interpretation in an L ′ theory T ′ iff 1. T ′ ⊢ ∃ xυ I ( x ) ; 2. T ′ ⊢ ∀ � x ) → ∃ ! y ( υ I ( y ) ∧ f I ( y,� x ( υ I ( � x ))) . • I is an interpretation of an L theory T in T ′ iff 1. (as above); 2. (as above); 3. if T ⊢ ϕ then T ′ ⊢ ϕ I for any ϕ ∈ L . – p. 21

  27. Theories ess. containing Q “ T ′ ess. contains T ” = “ ∃ interpretation of T in T ′ ”. – p. 22

  28. Theories ess. containing Q “ T ′ ess. contains T ” = “ ∃ interpretation of T in T ′ ”. • ZFC essentially contains Q by von Neumann interpretation v : 1. υ v ( x ) ≡ “ x is a finite von Neumann ordinal”; 2. S v ( y, x ) ≡ y = x ∪ { x } , etc.; – p. 22

  29. Theories ess. containing Q “ T ′ ess. contains T ” = “ ∃ interpretation of T in T ′ ”. • ZFC essentially contains Q by von Neumann interpretation v : 1. υ v ( x ) ≡ “ x is a finite von Neumann ordinal”; 2. S v ( y, x ) ≡ y = x ∪ { x } , etc.; • modal extensions of PA (directly) contains Q ; – p. 22

  30. Theories ess. containing Q “ T ′ ess. contains T ” = “ ∃ interpretation of T in T ′ ”. • ZFC essentially contains Q by von Neumann interpretation v : 1. υ v ( x ) ≡ “ x is a finite von Neumann ordinal”; 2. S v ( y, x ) ≡ y = x ∪ { x } , etc.; • modal extensions of PA (directly) contains Q ; • Heyting Arithmetic HA (ess.) contains Q by • HA literally extends PA in ∧ , ¬ , ∀ , with extra-operators ∨ , ∃ (like modality); – p. 22

  31. Theories ess. containing Q “ T ′ ess. contains T ” = “ ∃ interpretation of T in T ′ ”. • ZFC essentially contains Q by von Neumann interpretation v : 1. υ v ( x ) ≡ “ x is a finite von Neumann ordinal”; 2. S v ( y, x ) ≡ y = x ∪ { x } , etc.; • modal extensions of PA (directly) contains Q ; • Heyting Arithmetic HA (ess.) contains Q by • HA literally extends PA in ∧ , ¬ , ∀ , with extra-operators ∨ , ∃ (like modality); • relaxing the notion of interpretation so that double negation translation N is included: ( ϕ ∨ ψ ) N ≡ ¬ ( ¬ ϕ N ∧¬ ψ N ) ; ( ∃ xϕ ( x )) N ≡ ¬∀ x ¬ ϕ ( x ) N ; etc. – p. 22

  32. Presburger Arithmetic PresA Language L PresA = { 0 , S, + } ; Axioms 1. ¬ ( S ( x ) = 0) ; 2. S ( x ) = S ( y ) → x = y ; 3. x = 0 ∨ ∃ y ( x = S ( y )) ; 4. x +0 = x ; and x + S ( y ) = S ( x + y ) ; 5. induction for all L PresA formulae. – p. 23

  33. Presburger Arithmetic PresA Language L PresA = { 0 , S, + } ; Axioms 1. ¬ ( S ( x ) = 0) ; 2. S ( x ) = S ( y ) → x = y ; 3. x = 0 ∨ ∃ y ( x = S ( y )) ; 4. x +0 = x ; and x + S ( y ) = S ( x + y ) ; 5. induction for all L PresA formulae. Remarks • essentially, the · -free fragment of PA ; – p. 23

  34. Presburger Arithmetic PresA Language L PresA = { 0 , S, + } ; Axioms 1. ¬ ( S ( x ) = 0) ; 2. S ( x ) = S ( y ) → x = y ; 3. x = 0 ∨ ∃ y ( x = S ( y )) ; 4. x +0 = x ; and x + S ( y ) = S ( x + y ) ; 5. induction for all L PresA formulae. Remarks • essentially, the · -free fragment of PA ; • introduced by M. Presburger in 1929; – p. 23

  35. Presburger Arithmetic PresA Language L PresA = { 0 , S, + } ; Axioms 1. ¬ ( S ( x ) = 0) ; 2. S ( x ) = S ( y ) → x = y ; 3. x = 0 ∨ ∃ y ( x = S ( y )) ; 4. x +0 = x ; and x + S ( y ) = S ( x + y ) ; 5. induction for all L PresA formulae. Remarks • essentially, the · -free fragment of PA ; • introduced by M. Presburger in 1929; • proven by him to be complete, i.e., PreA ⊢ ϕ ⇐ ⇒ N | = ϕ for any ϕ ∈ L PresA ; – p. 23

  36. Presburger Arithmetic PresA Language L PresA = { 0 , S, + } ; Axioms 1. ¬ ( S ( x ) = 0) ; 2. S ( x ) = S ( y ) → x = y ; 3. x = 0 ∨ ∃ y ( x = S ( y )) ; 4. x +0 = x ; and x + S ( y ) = S ( x + y ) ; 5. induction for all L PresA formulae. Remarks • essentially, the · -free fragment of PA ; • introduced by M. Presburger in 1929; • proven by him to be complete, i.e., PreA ⊢ ϕ ⇐ ⇒ N | = ϕ for any ϕ ∈ L PresA ; • hence not essentially contains Q . – p. 23

  37. Theory of real closed fields RCF Language L RCF := { 0 , 1 , − , + , · , < } ; Axioms 1. x +0 = x ; x +( − x ) = 0 ; x + y = y + x ; 2. x · 0 = 0 ; x · ( y + z ) = x · y + x · z ; x · y = y · x ; 3. x < y → x + z < y + z ; x > 0 ∧ y > 0 → x · y > 0 ; 4. x > 0 → ∃ y ( x = y · y ) ; 5. ∀ x 2 n +1 ...x 0 ( x 2 n +1 � = 0 → ∃ y ( � i ≤ 2 n +1 x i · y i = 0)) . – p. 24

  38. Theory of real closed fields RCF Language L RCF := { 0 , 1 , − , + , · , < } ; Axioms 1. x +0 = x ; x +( − x ) = 0 ; x + y = y + x ; 2. x · 0 = 0 ; x · ( y + z ) = x · y + x · z ; x · y = y · x ; 3. x < y → x + z < y + z ; x > 0 ∧ y > 0 → x · y > 0 ; 4. x > 0 → ∃ y ( x = y · y ) ; 5. ∀ x 2 n +1 ...x 0 ( x 2 n +1 � = 0 → ∃ y ( � i ≤ 2 n +1 x i · y i = 0)) . Remarks • proven by Tarski (1951) to admit quantifier-elimination; and so • RFC ⊢ ϕ ⇐ ⇒ ( R , 0 , 1 , − , + , · , < ) | = ϕ ; – p. 24

  39. Theory of real closed fields RCF Language L RCF := { 0 , 1 , − , + , · , < } ; Axioms 1. x +0 = x ; x +( − x ) = 0 ; x + y = y + x ; 2. x · 0 = 0 ; x · ( y + z ) = x · y + x · z ; x · y = y · x ; 3. x < y → x + z < y + z ; x > 0 ∧ y > 0 → x · y > 0 ; 4. x > 0 → ∃ y ( x = y · y ) ; 5. ∀ x 2 n +1 ...x 0 ( x 2 n +1 � = 0 → ∃ y ( � i ≤ 2 n +1 x i · y i = 0)) . Remarks • proven by Tarski (1951) to admit quantifier-elimination; and so • RFC ⊢ ϕ ⇐ ⇒ ( R , 0 , 1 , − , + , · , < ) | = ϕ ; • hence not essentially contains Q . – p. 24

  40. Quiz 2 — Which is correct? • Hilbert’s Programme looks for: a complete and decidable axiomatization of real numbers . Gödel Incompleteness Theorem answers: “ impossible ”. • Tarski’s Theorem (1951): quantifier elimination of real closed field . As a consequence, it yields: a complete and decidable axiomatization of ( R , 0 , 1 , − , + , · , < ) . – p. 25

  41. The Statement (5) If a first order theory T satisfies the following: • T is consistent; • T is recursively axiomatizable; • T essentially contains Robinson Arithmetic Q , then the following hold: 1st incompleteness: T is not complete; – p. 26

  42. The Statement (5) If a first order theory T satisfies the following: • T is consistent; • T is recursively axiomatizable; • T essentially contains Robinson Arithmetic Q , then the following hold: 1st incompleteness: T is not complete; 2nd incompleteness: T cannot prove a sentence which represents the consistency of T . – p. 26

  43. Nelson’s trick There is an interpretation of IΣ 0 + Ω 1 in Q . • Main idea: define an L Q formula W ( x ) which intuitively means “ < is well-founded below x ”; – p. 27

  44. Nelson’s trick There is an interpretation of IΣ 0 + Ω 1 in Q . • Main idea: define an L Q formula W ( x ) which intuitively means “ < is well-founded below x ”; • Nelson’s interpretation n should be 1. υ n ( x ) ≡ W ( x ) ; 2. S n ( y, x ) ≡ y = S ( x ) ; + n ( z, x, y ) ≡ z = x + y ; · n ( z, x, y ) ≡ z = x · y . 3. = n ( x, y ) ≡ x = y ; < n ( x, y ) ≡ x < y . – p. 27

  45. Nelson’s trick There is an interpretation of IΣ 0 + Ω 1 in Q . • Main idea: define an L Q formula W ( x ) which intuitively means “ < is well-founded below x ”; • Nelson’s interpretation n should be 1. υ n ( x ) ≡ W ( x ) ; 2. S n ( y, x ) ≡ y = S ( x ) ; + n ( z, x, y ) ≡ z = x + y ; · n ( z, x, y ) ≡ z = x · y . 3. = n ( x, y ) ≡ x = y ; < n ( x, y ) ≡ x < y . • Compare to ϕ �→ ϕ WF in set theory. – p. 27

  46. Nelson’s trick There is an interpretation of IΣ 0 + Ω 1 in Q . • Main idea: define an L Q formula W ( x ) which intuitively means “ < is well-founded below x ”; • Nelson’s interpretation n should be 1. υ n ( x ) ≡ W ( x ) ; 2. S n ( y, x ) ≡ y = S ( x ) ; + n ( z, x, y ) ≡ z = x + y ; · n ( z, x, y ) ≡ z = x · y . 3. = n ( x, y ) ≡ x = y ; < n ( x, y ) ≡ x < y . • Compare to ϕ �→ ϕ WF in set theory. As a consequence, “ T ess. contains Q ” ⇐ ⇒ “ T ess. contains IΣ 0 + Ω 1 ” – p. 27

  47. Numeralwise representation R ⊆ ω n is numeralwise represented by ϕ ( � x ) iff • Q ⊢ ϕ ( k 1 , ..., k n ) ⇐ ⇒ R ( k 1 , ..., k n ) and • Q ⊢ ¬ ϕ ( k 1 , ..., k n ) ⇐ ⇒ ¬ R ( k 1 , ..., k n ) , where k := S ( ... ( S (0) ... ) . � �� � k – p. 28

  48. Numeralwise representation R ⊆ ω n is numeralwise represented by ϕ ( � x ) iff • Q ⊢ ϕ ( k 1 , ..., k n ) ⇐ ⇒ R ( k 1 , ..., k n ) and • Q ⊢ ¬ ϕ ( k 1 , ..., k n ) ⇐ ⇒ ¬ R ( k 1 , ..., k n ) , where k := S ( ... ( S (0) ... ) . � �� � k We have the following L Q formulae ( Σ 0 1 completeness): • Q ⊢ neg( � � , k ) ⇐ ⇒ k = � ¬ ϕ ϕ � and Q ⊢ ¬ neg( � � , k ) ⇐ ⇒ k � = � ¬ ϕ ϕ � ; – p. 28

  49. Numeralwise representation R ⊆ ω n is numeralwise represented by ϕ ( � x ) iff • Q ⊢ ϕ ( k 1 , ..., k n ) ⇐ ⇒ R ( k 1 , ..., k n ) and • Q ⊢ ¬ ϕ ( k 1 , ..., k n ) ⇐ ⇒ ¬ R ( k 1 , ..., k n ) , where k := S ( ... ( S (0) ... ) . � �� � k We have the following L Q formulae ( Σ 0 1 completeness): • Q ⊢ neg( � � , k ) ⇐ ⇒ k = � ¬ ϕ ϕ � and Q ⊢ ¬ neg( � � , k ) ⇐ ⇒ k � = � ¬ ϕ ϕ � ; • Q ⊢ Prf T ( � Λ � ) ⇐ ⇒ Λ is a T -proof of ϕ � , � ϕ Q ⊢ ¬ Prf T ( � Λ � ) ⇐ ⇒ Λ is not a T -proof of ϕ � , � ϕ (if T is recursively axiomatizable). – p. 28

  50. Numeralwise representation R ⊆ ω n is numeralwise represented by ϕ ( � x ) iff • Q ⊢ ϕ ( k 1 , ..., k n ) ⇐ ⇒ R ( k 1 , ..., k n ) and • Q ⊢ ¬ ϕ ( k 1 , ..., k n ) ⇐ ⇒ ¬ R ( k 1 , ..., k n ) , where k := S ( ... ( S (0) ... ) . � �� � k We have the following L Q formulae ( Σ 0 1 completeness): • Q ⊢ neg( � � , k ) ⇐ ⇒ k = � ¬ ϕ ϕ � and Q ⊢ ¬ neg( � � , k ) ⇐ ⇒ k � = � ¬ ϕ ϕ � ; • Q ⊢ Prf T ( � Λ � ) ⇐ ⇒ Λ is a T -proof of ϕ � , � ϕ Q ⊢ ¬ Prf T ( � Λ � ) ⇐ ⇒ Λ is not a T -proof of ϕ � , � ϕ (if T is recursively axiomatizable). Then it is natural to define Con( T ) : ≡ ¬∃ x Prf T ( x, � ⊥ � ) . – p. 28

  51. Ambiguity Even if the following hold for all Λ and ϕ : • Q ⊢ Prf T ( � Λ � ) ⇐ ⇒ Λ is a T -proof of ϕ and � , � ϕ Q ⊢ ¬ Prf T ( � Λ � ) ⇐ ⇒ Λ is not a T -proof of ϕ ; � , � ϕ • Q ⊢ Prf ∗ T ( � Λ � ) ⇐ ⇒ Λ is a T -proof of ϕ and � , � ϕ Q ⊢ ¬ Prf ∗ T ( � Λ � ) ⇐ ⇒ Λ is not a T -proof of ϕ ; � , � ϕ – p. 29

  52. Ambiguity Even if the following hold for all Λ and ϕ : • Q ⊢ Prf T ( � Λ � ) ⇐ ⇒ Λ is a T -proof of ϕ and � , � ϕ Q ⊢ ¬ Prf T ( � Λ � ) ⇐ ⇒ Λ is not a T -proof of ϕ ; � , � ϕ • Q ⊢ Prf ∗ T ( � Λ � ) ⇐ ⇒ Λ is a T -proof of ϕ and � , � ϕ Q ⊢ ¬ Prf ∗ T ( � Λ � ) ⇐ ⇒ Λ is not a T -proof of ϕ ; � , � ϕ we do not have • Q ⊢ ∀ x, y (Prf T ( x, y ) ↔ Prf ∗ T ( x, y )) , nor – p. 29

  53. Ambiguity Even if the following hold for all Λ and ϕ : • Q ⊢ Prf T ( � Λ � ) ⇐ ⇒ Λ is a T -proof of ϕ and � , � ϕ Q ⊢ ¬ Prf T ( � Λ � ) ⇐ ⇒ Λ is not a T -proof of ϕ ; � , � ϕ • Q ⊢ Prf ∗ T ( � Λ � ) ⇐ ⇒ Λ is a T -proof of ϕ and � , � ϕ Q ⊢ ¬ Prf ∗ T ( � Λ � ) ⇐ ⇒ Λ is not a T -proof of ϕ ; � , � ϕ we do not have • Q ⊢ ∀ x, y (Prf T ( x, y ) ↔ Prf ∗ T ( x, y )) , nor • Q ⊢ Con( T ) ↔ Con ∗ ( T ) , where Con ∗ ( T ) : ≡ ¬∃ x Prf ∗ T ( x, � ⊥ � ) . – p. 29

  54. Ambiguity Even if the following hold for all Λ and ϕ : • Q ⊢ Prf T ( � Λ � ) ⇐ ⇒ Λ is a T -proof of ϕ and � , � ϕ Q ⊢ ¬ Prf T ( � Λ � ) ⇐ ⇒ Λ is not a T -proof of ϕ ; � , � ϕ • Q ⊢ Prf ∗ T ( � Λ � ) ⇐ ⇒ Λ is a T -proof of ϕ and � , � ϕ Q ⊢ ¬ Prf ∗ T ( � Λ � ) ⇐ ⇒ Λ is not a T -proof of ϕ ; � , � ϕ we do not have • Q ⊢ ∀ x, y (Prf T ( x, y ) ↔ Prf ∗ T ( x, y )) , nor • Q ⊢ Con( T ) ↔ Con ∗ ( T ) , where Con ∗ ( T ) : ≡ ¬∃ x Prf ∗ T ( x, � ⊥ � ) . The point here: T ⊢ ϕ ( k ) for all k ∈ ω �⇒ T ⊢ ∀ xϕ ( x ) . – p. 29

  55. Quiz 3 — Which is correct? • Gödel 2nd Incompleteness (1931): PA cannot prove a sentence which represents the consistency of PA . • Kreisel’s Remark (1960): PA does prove a sentence which represents the consistency of PA . – p. 30

  56. 2. A Brief Look at the Proofs – p. 31

  57. Rosser’s trick Given Prf T such that, for all Λ and ϕ , • Q ⊢ Prf T ( � Λ � ) ⇐ ⇒ Λ is a T -proof of ϕ , � , � ϕ • Q ⊢ ¬ Prf T ( � Λ � ) ⇐ ⇒ Λ is not a T -proof of ϕ , � , � ϕ – p. 32

  58. Rosser’s trick Given Prf T such that, for all Λ and ϕ , • Q ⊢ Prf T ( � Λ � ) ⇐ ⇒ Λ is a T -proof of ϕ , � , � ϕ • Q ⊢ ¬ Prf T ( � Λ � ) ⇐ ⇒ Λ is not a T -proof of ϕ , � , � ϕ we can define Prf ∗ T by Prf ∗ T ( x, u ) : ≡ Prf( x, u ) ∧ ( ∀ z < x ) ∀ v ¬ (neg( u, v ) ∧ Prf( z, v )) . – p. 32

  59. Rosser’s trick Given Prf T such that, for all Λ and ϕ , • Q ⊢ Prf T ( � Λ � ) ⇐ ⇒ Λ is a T -proof of ϕ , � , � ϕ • Q ⊢ ¬ Prf T ( � Λ � ) ⇐ ⇒ Λ is not a T -proof of ϕ , � , � ϕ we can define Prf ∗ T by Prf ∗ T ( x, u ) : ≡ Prf( x, u ) ∧ ( ∀ z < x ) ∀ v ¬ (neg( u, v ) ∧ Prf( z, v )) . Then Q ⊢ Prf ∗ T ( � Λ � ) ⇐ ⇒ Λ is a T -proof of ϕ ∧ � , � ϕ there is no T -proof ∆ of ¬ ϕ ∆ Λ � < � with � � = ⇒ Λ is a T -proof of ϕ. – p. 32

  60. Rosser’s trick Given Prf T such that, for all Λ and ϕ , • Q ⊢ Prf T ( � Λ � ) ⇐ ⇒ Λ is a T -proof of ϕ , � , � ϕ • Q ⊢ ¬ Prf T ( � Λ � ) ⇐ ⇒ Λ is not a T -proof of ϕ , � , � ϕ we can define Prf ∗ T by Prf ∗ T ( x, u ) : ≡ Prf( x, u ) ∧ ( ∀ z < x ) ∀ v ¬ (neg( u, v ) ∧ Prf( z, v )) . Then Q ⊢ Prf ∗ T ( � Λ � ) ⇐ ⇒ Λ is a T -proof of ϕ ∧ � , � ϕ there is no T -proof ∆ of ¬ ϕ ∆ Λ � < � with � � = ⇒ Λ is a T -proof of ϕ. If T is consistent, ⇐ = also holds. – p. 32

  61. Rosser’s trick Given Prf T such that, for all Λ and ϕ , • Q ⊢ Prf T ( � Λ � ) ⇐ ⇒ Λ is a T -proof of ϕ , � , � ϕ • Q ⊢ ¬ Prf T ( � Λ � ) ⇐ ⇒ Λ is not a T -proof of ϕ , � , � ϕ we can define Prf ∗ T by Prf ∗ T ( x, u ) : ≡ Prf( x, u ) ∧ ( ∀ z < x ) ∀ v ¬ (neg( u, v ) ∧ Prf( z, v )) . Then Q ⊢ ¬ Prf ∗ T ( � Λ � ) ⇐ ⇒ Λ is not a T -proof of ϕ ∨ � , � ϕ there is a T -proof ∆ of ¬ ϕ ∆ Λ � < � with � � ⇐ = Λ is not a T -proof of ϕ. – p. 32

  62. Rosser’s trick Given Prf T such that, for all Λ and ϕ , • Q ⊢ Prf T ( � Λ � ) ⇐ ⇒ Λ is a T -proof of ϕ , � , � ϕ • Q ⊢ ¬ Prf T ( � Λ � ) ⇐ ⇒ Λ is not a T -proof of ϕ , � , � ϕ we can define Prf ∗ T by Prf ∗ T ( x, u ) : ≡ Prf( x, u ) ∧ ( ∀ z < x ) ∀ v ¬ (neg( u, v ) ∧ Prf( z, v )) . Then Q ⊢ ¬ Prf ∗ T ( � Λ � ) ⇐ ⇒ Λ is not a T -proof of ϕ ∨ � , � ϕ there is a T -proof ∆ of ¬ ϕ ∆ Λ � < � with � � ⇐ = Λ is not a T -proof of ϕ. If T is consistent, = ⇒ also holds. – p. 32

  63. Kreisel’s remark (1960) Since there is a proof ∆ of ¬⊥ , if T is consistent, Q ⊢ ( ∀ x < � ∆ � ) ¬ Prf( x, � ⊥ � ) . – p. 33

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend