beauty contests and the term structure
play

Beauty Contests and the Term Structure Martin Ellison 1 Andreas - PowerPoint PPT Presentation

Beauty Contests and the Term Structure Martin Ellison 1 Andreas Tischbirek 2 1 University of Oxford, NuCamp & CEPR 2 HEC Lausanne, University of Lausanne 13 June 2019 3 rd MMCN Conference, Goethe University Frankfurt Motivation Can


  1. Beauty Contests and the Term Structure Martin Ellison 1 Andreas Tischbirek 2 1 University of Oxford, NuCamp & CEPR 2 HEC Lausanne, University of Lausanne 13 June 2019 3 rd MMCN Conference, Goethe University Frankfurt

  2. Motivation Can information frictions help to solve the bond premium puzzle? • Generally approaches in the DSGE literature • take risk as given and manipulate preferences • take preferences as given and add sources of fundamental risk • What we do • take fundamental risk and preferences as given and explore importance of information and expectations • Key ingredients of our preferred model • Households observe a noisy signal rather than a fundamental • Strategic complementarity in forecast formation

  3. Literature Bond premium puzzle • Recursive preferences Epstein and Zin (1989), Rudebusch and Swanson (2012), van Binsbergen et al. (2012) • Model uncertainty Barillas et al. (2009), Collard et al. (2018) • Long-run risk Bansal and Yaron (2004), Croce (2014) • Rare disasters Rietz (1988), Barro (2006) • Habit Formation Jermann (1998), Abel (1999), Rudebusch and Swanson (2008) Information in strategic settings and volatility • Use of public information Morris and Shin (2002), Angeletos and Pavan (2007) • Volatility from information frictions Angeletos and La’O (2013), Bergemann et al. (2015), Angeletos et al. (2018)

  4. Overview 1 Decomposing term premia—the role of information 2 Simplified model with different information structures 3 More quantitative RBC model and estimation

  5. Decomposing the Term Premium Household side of generic DSGE model • Representative household maximises ∞ � β s − t u ( c s , l s ) E t s = t subject to N N � p ( n ) b ( n ) � p ( n − 1) b ( n ) P t c t + = w t l t + t − 1 + P t + T t t t t n =1 n =1 • b ( n ) —non-contingent default-free zero-coupon bonds with t maturity n = 1 , 2 , . . . , N • p ( n ) —bond price (note p (0) = 1) t t

  6. Decomposing the Term Premium • Interior solution p ( n ) = E t m t +1 p ( n − 1) t +1 , n ∈ { 1 , 2 , . . . , N } t with stochastic discount factor (SDF) m t +1 ≡ β u c ( c t +1 , l t +1 ) 1 u c ( c t , l t ) Π t +1 • Hypothetical “risk-neutral price” p ( n ) p ( n − 1) = e − i t E t ˜ ˜ t +1 , n ∈ { 1 , 2 , . . . , N } t • Term premium (in per-period terms) = 1 � � ψ ( n ) p ( n ) − p ( n ) ˜ t t t n

  7. Decomposing the Term Premium Example – Two-period bond • Term premium = − 1 ψ (2) 2 Cov t ( m t +1 , p (1) t +1 ) t • Mean term premium (by law of total covariance) = 1 E ψ (2) 2 [ − Cov ( m t +1 , m t +2 ) + Cov ( E t m t +1 , E t +1 m t +2 )] t ψ ( n ) E ψ ( n ) t t

  8. Simple Economy • Production function of representative firm y t = A t ¯ l 1 − α • Technology a t ≡ ln A t follows η t ∼ N (0 , σ 2 a t = x t + η t , η ) ε t ∼ N (0 , σ 2 x t = ρ x t − 1 + ε t , ε ) • Household utility is logarithmic • SDF can be expressed as � − 1 � c t +1 m t +1 = β c t � − 1 � A t +1 ¯ l 1 − α = β A t ¯ l 1 − α ≈ β (1 + a t − a t +1 )

  9. Simple Economy - Full Information # 10 -5 # 10 -5 ! Cov(m t+1 ; m t+2 ) 9 9 # $ Cov E(m t+1 jI $ t ) ; E(m t+2 jI $ t+1 ) E A (2) 8 8 F I 7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 ; Var(x t ) = Var(a t ) Figure: Components of the mean term premium ( n = 2). β = 0 . 99, Var ( a t ) = 0 . 01 2 . Left panel: Var ( x t ) / Var ( a t ) = 0 . 9. Right panel: ρ = 0 . 8.

  10. Simple Economy - Partial Information 6 # 10 -5 6 # 10 -5 ! Cov(m t+1 ; m t+2 ) # $ Cov E(m t+1 jI $ t ) ; E(m t+2 jI $ t+1 ) 5 E A (2) 5 F I # $ Cov E(m t+1 jI 0 t ) ; E(m t+2 jI 0 t+1 ) E A (2) P I 4 4 3 3 2 2 1 1 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 ; Var(x t ) = Var(a t ) Figure: Components of the mean term premium ( n = 2). β = 0 . 99, Var ( a t ) = 0 . 01 2 . Left panel: Var ( x t ) / Var ( a t ) = 0 . 9. Right panel: ρ = 0 . 8.

  11. Simple Economy - Noisy Information 6 # 10 -5 6 # 10 -5 ! Cov(m t+1 ; m t+2 ) # $ E(m t+1 jI $ t ) ; E(m t+2 jI $ Cov t+1 ) 5 5 E A (2) F I # $ E(m t+1 jI 00 t ) ; E(m t+2 jI 00 Cov t+1 ) E A (2) NI 4 4 3 3 2 2 1 1 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Var(x t ) = Var(a t ) ; Figure: Components of the mean term premium ( n = 2). β = 0 . 99, Var ( a t ) = 0 . 01 2 , σ 2 ξ = Var ( a t ) / 2, Left panel: Var ( x t ) / Var ( a t ) = 0 . 9. Right panel: ρ = 0 . 8.

  12. Simple Economy - Beauty Contest Information structure • Agent i ∈ [0 , 1] receives signal s i , t allowing them to deduce x n i , t = x t + n t + n i , t → Agents heterogeneously informed now • Noise persistent so that x n i , t = ρ x n i , t − 1 + ε n i , t where ε n i , t = ε t + ξ t + ζ i , t • Forming expectation about m t +1 requires inferring x t from x n i , t

  13. Simple Economy - Beauty Contest Strategic complementarity • Strategic forecast formed by minimising �� 1 � � � � (ˆ E ( x t |I i , t ) − x t ) 2 |I i , t ˆ ˆ � (1 − ω ) E − ω E E ( x t |I j , t ) dj � I i , t E ( x t |I i , t ) � 0 • First-order condition of i �� 1 � ω � ˆ ˆ � E ( x t |I i , t ) = E ( x t |I i , t ) + 2(1 − ω ) E E ( x t |I j , t ) dj � I i , t � 0 where � � σ 2 ε x n E ( x t |I i , t ) = i , t σ 2 ε + σ 2 ξ + σ 2 ζ Equilibrium

  14. Simple Economy - Beauty Contest 6 # 10 -5 6 # 10 -5 ! Cov(m t+1 ; m t+2 ) # $ E(m t+1 jI $ t ) ; E(m t+2 jI $ Cov t+1 ) 5 5 E A (2) h i F I ^ E(m t+1 jI i ; t ) ; ^ Cov E(m t+2 jI i ; t+1 ) E A (2) 4 4 BC 3 3 2 2 1 1 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 ; Var(x t ) = Var(a t ) Figure: Components of the term premium ( n = 2). β = 0 . 99, Var ( a t ) = 0 . 01 2 , σ 2 ξ = σ 2 ζ = 0 . 05 σ 2 ε and ω = 0 . 5. Left panel: Var ( x t ) / Var ( a t ) = 0 . 9. Right panel: ρ = 0 . 8.

  15. More General Business Cycle Model • As simple model, but now • Labour supply endogenous (competitive labour market) y t = A t l 1 − α t • Household utility of more general form � 1 − σ � l 1+ χ 1 t u ( c t , l t ) = c t − χ 0 1 − σ 1 + χ • Solution based on exact SDF rather than an approximation thereof (model solved numerically now) − σ l 1+ χ    c t +1 − χ 0 t +1 1+ χ m t +1 = β  l 1+ χ c t − χ 0 t 1+ χ

  16. More General Business Cycle Model • Bond prices p ( n ) ( x n i , t , η t ) i � m t +1 p ( n − 1) � ( x n = E i , t +1 , η t +1 ) |I i , t i � (1 − α ) � � � � � γ 2 − σ  χ 0  γ 1 ( e x t +1 + η t +1 ) γ 2 − e x t +1 + η t +1  1+ χ χ 0  = β � (1 − α ) � γ 2 χ 0 γ 1 ( e x t + η t ) γ 2 − e x t + η t   1+ χ χ 0 R R R R p ( n − 1) ( x n i , t +1 , η t +1 ) × dF x , x ′ , ( x n ) ′ | x n ( x t , x t +1 , x n i , t +1 | x n i , t ) dF η ( η t +1 ) i where � � �� σ 2 σ 2 ε ε x t | x n θ x n i , t ∼ N i , t , 1 − ε + σ 2 ξ + σ 2 1 − ρ 2 σ 2 ζ Num. quadrature Precision

  17. Quantitative Analysis Parameter Value Description Target (Data) i (4) = 0 . 0205 − 0 . 0191 β 0.9997 Discount factor (Treasury yields, Adrian et al. (2013), 4/1/99 - 30/6/17; Inflation expectations, SPF, 1999q1-2017q2) α 0.384 1 - Labour share 1 − α = 0 . 6160 (Share of labour compensation in GDP, Penn World Table, 1999-2014) χ 0.708 Inverse Frisch elasticity Var (ln l t ) / Var (ln c t ) = 0 . 3428 (Consumption of nondurables and services, BEA; Population and hours, BLS, 1999q1-2017q2) χ 0 2.04 Labour utility weight l = 1 / 3 Table: Calibrated parameters

  18. Quantitative Analysis 0.05 Forecasted productivity growth 0.04 0.03 0.02 0.01 0 1995 2000 2005 2010 2015 Year Figure: Forecasted annual productivity growth over next ten years (SPF). Solid line: Median. Dashed lines: 25th and 75th percentile.

  19. Quantitative Analysis Parameter Estimate 95% Confidence Interval Description ρ 0.90 [0 . 81 , 0 . 99] Shock persistence 2 . 0 × 10 − 3 [9 . 7 × 10 − 4 , 3 . 1 × 10 − 3 ] σ ε SD of innovation to persistent tech. component 8 . 0 × 10 − 4 [0 , 2 . 4 × 10 − 3 ] σ η SD of i.i.d. transitory tech. component 9 . 9 × 10 − 5 [9 . 8 × 10 − 5 , 1 . 0 × 10 − 4 ] σ ξ SD of innovation to common noise component 2 . 2 × 10 − 3 [1 . 9 × 10 − 3 , 2 . 5 × 10 − 3 ] σ ζ SD of innovation to idiosyncratic noise component ω 0.80 [0 . 78 , 0 . 82] Strategic complementarity σ 6.0 [5 . 7 , 6 . 3] Coefficient of relative risk aversion Table: Estimated parameters

  20. Quantitative Analysis Moment US data Estimated Model with full Model with 1999q1-2017q2 model information ω = 0 Targeted γ 50 1 . 52 × 10 − 5 1 . 42 × 10 − 5 2 . 11 × 10 − 7 4 . 68 × 10 − 8 Var � � ˆ t Cov � γ 50 γ 50 � 1 . 25 × 10 − 5 9 . 29 × 10 − 6 1 . 38 × 10 − 7 3 . 06 × 10 − 8 ˆ t , ˆ t − 4 E � γ 75 γ 25 � 5 . 32 × 10 − 3 5 . 40 × 10 − 3 3 . 10 × 10 − 4 ˆ − ˆ 0 t t E ψ (4) 8.2 bps 8.2 bps 2.6 bps 1.0 bps t Not targeted E ψ (8) 21.2 bps 16.0 bps 5.4 bps 2.0 bps t E ψ (12) 34.5 bps 21.1 bps 7.6 bps 2.7 bps t E ψ (16) 46.7 bps 24.4 bps 9.3 bps 3.3 bps t E ψ (20) 57.2 bps 26.7 bps 10.7 bps 3.7 bps t Table: Data and model moments

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend