beam losses through the cycle
play

Beam losses through the cycle G. Papotti, A. Gorzawski, M. - PowerPoint PPT Presentation

LHC Beam Operation workshop - Evian 2012 Beam losses through the cycle G. Papotti, A. Gorzawski, M. Hostettler, R. Schmidt outline motivation 2011 vs 2012, PM browser module beam losses per beam mode capture, ramp, flat top,


  1. LHC Beam Operation workshop - Evian 2012 Beam losses through the cycle G. Papotti, A. Gorzawski, M. Hostettler, R. Schmidt

  2. outline motivation • – 2011 vs 2012, PM browser module beam losses per beam mode • – capture, ramp, flat top, squeeze, … • all 2012 fills until end of November – thanks to A. Gorzawski for a lot of data, analysis and plots some information on bunch-by-bunch differences • – appetizers on instabilities – bunch-by-bunch losses in stable beams and burn off disclaimer: • – give only overview of the year, no details on fill to fill differences – injection not treated 19 Dec 2012 giulia.papotti@cern.ch 2

  3. at the SPS SPS page 1 and Larger • – e.g. LHC3, 72 bunches 19 Dec 2012 giulia.papotti@cern.ch 3

  4. at the LHC (inject) • ramp • – 0.45 TeV to 0.5 TeV – 0.5 TeV to 4 TeV flat top • squeeze • adjust • stable beams • 19 Dec 2012 giulia.papotti@cern.ch 4

  5. before stable beams zoom from injection to • end of adjust 19 Dec 2012 giulia.papotti@cern.ch 5

  6. before stable beams zoom from injection to • end of adjust same for a fill in 2011 • 2011 ¡ 2012 ¡ 2011: used to have ~100% • transmission to stable beams 2012: <100% • … so look into the reasons • 19 Dec 2012 giulia.papotti@cern.ch 6

  7. PM Beam Power Loss Module statistical analysis over many fills • 19 Dec 2012 giulia.papotti@cern.ch 7

  8. PM Beam Power Loss Module 1 ¡ 2 ¡ statistical analysis over many fills • P = n 2 − n 1 peak power loss per mode • E 1 e 11 p @ 4 TeV t 2 − t 1 – based on sliding window (e.g. 5s, 20s, 80s) 19 Dec 2012 giulia.papotti@cern.ch 8

  9. 2011 vs 2012 statistics 2011 transmission: ~99.4% • – from end of injection to start of stable beams 2012 transmission: • – beam 1: ~96.2% – beam 2: ~95.3% 19 Dec 2012 giulia.papotti@cern.ch 9

  10. Losses per beam mode

  11. capture losses (.45->.5 TeV) MD3 ¡ energy ¡matching ¡ generally b1 worse than b2 • first energy matching improved the situation • – second not so much got generally worse ~after MD3 • – enhanced satellites? (Q20? batch-by-batch blow-up was often off) 19 Dec 2012 giulia.papotti@cern.ch 11

  12. ramp (.5->4 TeV) TS3 ¡ non-negligible losses • transmission improved towards the end of the run • – when had the higher losses at capture? – Q20 and smaller emittances? 19 Dec 2012 giulia.papotti@cern.ch 12

  13. ramp (.45 -> 4 TeV) max power loss during ramp • highest losses either at the start or at the end • – ramp function: 770s long beam 1, higher loss spikes • 19 Dec 2012 giulia.papotti@cern.ch 13

  14. ramp (.45 -> 4 TeV) plots for longer window (now 80s, was 20s) • highest loss mostly at the end of the ramp function • very similar peak loss values for beam 1 and beam 2 • 19 Dec 2012 giulia.papotti@cern.ch 14

  15. flat top few minutes long: manual tune trims and squeeze loading • negligible losses, generally b2 worse lifetime • – slightly worsened after octupole polarity change MO ¡polarity ¡change ¡ 19 Dec 2012 giulia.papotti@cern.ch 15

  16. squeeze MO ¡polarity ¡change ¡ generally b2 worse than b1, • throughout the year both beams got worse after • MO polarity change • max power loss – very reproducible for beam 1, but at different times – at precise times for beam 2 930s (sq. function = 925s long) 820s ( β *~0.8-0.7m) 420s ( β *~3m) 19 Dec 2012 giulia.papotti@cern.ch 16

  17. adjust split ¡coll ¡beam ¡process ¡ split collision beam process • made the difference – very reproducible losses and max power loss 19 Dec 2012 giulia.papotti@cern.ch 17

  18. first 5 mins in stable beams b1 generally worse • – shift crews used to say: “b2 loses earlier in cycle, b1 loses at start of stable beams” split ¡coll ¡beam ¡process ¡ 19 Dec 2012 giulia.papotti@cern.ch 18

  19. max power losses in 2011 generally factor 2-3 • smaller than 2012 beam 1 generally • higher losses no clear clustering • in time as in 2012 19 Dec 2012 giulia.papotti@cern.ch 19

  20. Bunch-by-bunch observations

  21. BBQ signal amplitude not ¡bunch-­‑by-­‑bunch! ¡ 1 ¡ ? ¡ 1 ¡ ? ¡ 1. ¡TS2 ¡ 2. ¡MO ¡polarity ¡change ¡ 3. ¡split ¡coll ¡beam ¡process ¡ ?. ¡Q’/MO ¡reducAon ¡incorporated ¡ in ¡collapse ¡funcAon ¡ 3 ¡ 2 ¡ 3 ¡ hard to correlate to max power loss • – preliminary analysis, more time required 19 Dec 2012 giulia.papotti@cern.ch 21

  22. emittance from luminosity count blown-up bunches in stable 4 • beams Lumi Emittance [um] 3.5 – emittance from luminosity 3 • 1.65e11ppb, 2.5um -> 7.26e33Hz/cm 2 • 1.65e11ppb, 3um -> 6.25e33Hz/cm 2 2.5 2 MO ¡polarity ¡change ¡ 500 1000 1500 2000 2500 3000 3500 Bunch number 1000 800 Blown � up bunch count not easy to correlate to • 600 BBQ amplitudes – more analysis required 400 200 0 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 Fill number Q20 ¡& ¡split ¡coll ¡beam ¡process ¡ M. ¡Hoste6ler, ¡LBOC, ¡20.11.2012 ¡ 19 Dec 2012 giulia.papotti@cern.ch 22

  23. b1 bunch length histogram splitting bunches with larger transverse • Bunch length histogram evolution, Fill 3287 1.5 emittance get lower bunch length Bunch Length [ns] 1.4 – build up during stable beams in beam 1 – no visible effect on beam 2 1.3 – for fills with selective transverse 1.2 emittance blow-up results in two distinct families • 1.1 0 1 2 3 4 5 6 7 Time in SB [h] Emittance vs. Length, 7h SB, Fill 3287 Emittance histogram evolution, Fill 3287 1.4 4.5 1.35 4 Emittance [um] Bunch length [ns] 3.5 1.3 3 1.25 2.5 1.2 2 1.15 0 1 2 3 4 5 6 7 Time in SB [h] 1.1 3 3.5 4 4.5 M. ¡Hoste6ler, ¡LBOC, ¡20.11.2012 ¡ Lumi Emittance [um] 19 Dec 2012 giulia.papotti@cern.ch 23

  24. b1 loss structure in stable beams first ~30 bunches of each SPS batch • Beam 1 losses: Fill 3363, 10.0h SB 0.4 in beam 1 lose up to 10% less in stable beams (SB) 0.35 – very reproducible, also there in 2011 Rel. Loss [1] 0.3 – no correlation with number of long- 0.25 range interactions – not visible on beam 2 (or smaller?) 0.2 cause not clear yet • 0.15 500 1000 1500 2000 2500 3000 3500 Slot Number Bunch loss B1, Fill 3363 0.35 Beam 2 losses: Fill 3363, 10.0h SB 0.4 0.325 Intensity loss in SB [1] 0.3 0.35 0.275 Rel. Loss [1] 0.3 0.25 0.25 0.225 0.2 0.2 20 40 60 80 100 120 140 Offset in 144 bunch train 0.15 500 1000 1500 2000 2500 3000 3500 M. ¡Hoste6ler, ¡LBOC, ¡30.10.2012 ¡ Slot Number 19 Dec 2012 giulia.papotti@cern.ch 24

  25. burn off collisions ¡in ¡ IP ¡8 ¡15 ¡158 ¡ 25 ¡ns ¡slot ¡ e.g. above plots for fill 3045 at 8 h of stable beams • residual loss has SPS batch structure • – after removing burn-off component from total losses ( σ proc = 101.8 mb) – particularly strong on b1 beam ¡2 ¡ beam ¡1 ¡ offset ¡in ¡SPS ¡batch ¡ offset ¡in ¡SPS ¡batch ¡ 19 Dec 2012 giulia.papotti@cern.ch 25

  26. conclusions losses through cycle are non-negligible: transmission ~95% • – capture (degradation towards the end possibly related to enhanced satellites?) – ramp: ~1% towards the end – squeeze: peak losses at precise moments for beam 2 – adjust: split collision beam process improved the reproducibility – stable beams • observation of bunch length histogram splitting and correlation to transverse emittance blow up • 144-bunch loss pattern to be understood stronger on beam 1 – plenty more analysis possible • support fill-to-fill data analysis tool • – more useful than end-of-the-year overview! 19 Dec 2012 giulia.papotti@cern.ch 26

  27. integrated lumi comparison 14 for full picture on • x 10 2 performance, need to Intensity at start of SB [p] fold in availability 1.8 intensity increase did not • 1.6 ‘clearly’ pay off in terms of integrated luminosity 1.4 1.2 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 7 x 10 7 � 1 ] Int. ATLAS Lumi, 8h SB [ub 6 0.35 Losses in 8h of SB [1] 0.3 5 0.25 0.2 4 0.15 0.1 3 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 19 Dec 2012 giulia.papotti@cern.ch 27

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend