b d q d q kd kd kq kq f f a c a b
play

b d q d + + q kd kd kq kq f f a c (a) (b) - - PowerPoint PPT Presentation

b d q d + + q kd kd kq kq f f a c (a) (b) - d d + q + - - kq - kd Vs + ( r) E - + f Ep + q a t (ref) 1 ref Is (b) (a) Three-phase machine Two-phase


  1. � b d q d + + q kd kd � � kq kq f f � a c (a) (b)

  2. - d d + q + - - kq - kd Vs � + ( r) E - + f � Ep + q � a � t � (ref) � 1 ref Is (b) (a)

  3. Three-phase machine Two-phase non-reciprocal Two-phase reciprocal ˆ ˆ ˆ V V V ˆ ˆ 2 ˆ 3 I I I 2 R s R s 3 R s L s − M s ≈ 3 2 L s [ ± L s 2 ] 2 L s [ ± L s 2 ] 3 ( L s − M s ) ≈ L s [ ± L s 2 ] M s = − 1 2 ( L s − L s σ ) ≈ − 1 0 0 2 L s M sr ( d ) = M sf M srd = M sf M srd = M sf M rsd = 3 M rs ( d ) = M sf M srd = M sf 2 M sf 2 R s ˆ P j = R s ˆ 2 R s ˆ P j = 3 P j = 3 I 2 I 2 I 2 2 ˆ m.m.f.= ˆ 2 ˆ m.m.f.= 3 m.m.f.= 3 I ( w ξ ) I ( w 0 ξ 0 ) I ( w ” ξ ”) Ψ phase = L s ˆ Ψ phase = ( L s − M s )ˆ 2 L s ˆ 2 L s ˆ I = 3 Ψ phase = 3 I I I 2 L s ˆ 2 L s ˆ 2 L s ˆ Ψ dr,ss = 3 Ψ dr,ss = 3 Ψ dr,ss = 3 I I I Ψ dr,sr = M sf i f Ψ dr,sr = M sf i f Ψ dr,sr = M sf i f 2 M sf ˆ 2 M sf ˆ 2 M sf ˆ Ψ dr,rs = 3 Ψ dr,rs = 3 Ψ dr,rs = 3 I I I non-power-invariant, non-reciprocal power-invariant; reciprocal equivalence voltages: w 0 ξ 0 = w ξ equivalence voltages: w ” ξ ” = w ξ equivalence mmf: w 0 ξ 0 = 3 equivalence mmf: w ” ξ ” = w ξ 2 w ξ Table 28.1: Three-phase synchronous machine and two-phase equivalents

  4. two-pole two-pole four-pole four-pole Turbo generators air cooling conductor cooling air cooling conductor cooling 1 . 0 . . . 1 . 75 (1 . 65) 1 . 5 . . . 2 . 25 (1 . 85) 1 . 0 . . . 1 . 75 (1 . 65) 1 . 5 . . . 2 . 25 (1 . 85) x d 0 . 96 . . . 1 . 71 (1 . 61) 1 . 46 . . . 2 . 21 (1 . 8) 0 . 96 . . . 1 . 71 (1 . 61) 1 . 46 . . . 2 . 21 (1 . 8) x q 0 0 . 12 . . . 0 . 25 (0 . 17) 0 . 2 . . . 0 . 35 (0 . 28) 0 . 2 . . . 0 . 3 (0 . 25) 0 . 25 . . . 0 . 45 (0 . 35) x d x ” 0 . 08 . . . 0 . 18 (0 . 12) 0 . 15 . . . 0 . 28 (0 . 22) 0 . 12 . . . 0 . 20 (0 . 16) 0 . 20 . . . 0 . 32 (0 . 28) d = x ” = x ” = x ” = x ” x 2 (inverse field) d d d d (0 . 1 . . . 0 . 7) x ” (0 . 1 . . . 0 . 7) x ” (0 . 1 . . . 0 . 7) x ” (0 . 1 . . . 0 . 7) x ” x 0 (zero sequence) d d d d x p (Potier reactance) 0 . 07 . . . 0 . 17 0 . 2 . . . 0 . 45 0 . 12 . . . 0 . 24 0 . 25 . . . 0 . 45 0 . 001 . . . 0 . 007 0 . 001 . . . 0 . 005 0 . 001 . . . 0 . 005 0 . 001 . . . 0 . 005 r s 0 d 0 (sec) 5 5 8 6 T 0 d (sec) 0 . 6 0 . 75 1 . 0 1 . 2 T T ” d (sec) 0 . 035 0 . 035 0 . 035 0 . 045 T d (sec) 0 . 13 . . . 0 . 45 0 . 2 . . . 0 . 55 0 . 2 . . . 0 . 4 0 . 25 . . . 0 . 55 τ i (sec) 5 . . . 7 5 . . . 7 6 . . . 8 6 . . . 8 Table 28.2: Range (and rated values) for time constants and p.u inductances of large synchronous machines

  5. ’ � T1 � V Fv - 1 �� Fvf � Vf 2/NP)p(p+ w) (J n � � - - �� F � T -1( +p ) m Ai c d � � T

  6. Im p Im p Im p 1,0 0,01 0,1 & � � kd kq -1 -1 -1 � kd -1 � kq � f � kqh } } 0,2 0,15 0,05 0,2 0,03 0,01 0,02 0,2 0,15 0,05 (a) (b) (c) reduced frequency � o=0,1 reduced frequency � o=0,01 rated frequency � o=1 Epo/Vo=2 Epo/Vo=1 Epo/Vo=1 dkd=0,7 ; df=0,27 ; q=0,3) ( d= q=25 ; kd= kq=7 ; f=300 ; dq=1,8 ; d 0,2 ; � � � � � � � � ���� �

  7. Im p Im p 1,0 0,1 -1 -1 0,05 � kd � kq , -1 � kd -1 -1 � f ��� kqh } } 0,5 0,3 0,2 0,1 0,8 0,4 0,12 0,05 (a) (b) � o=0,1 rated frequency reduced frequency � o=1 ( d=2,4 ; q=2 ; kd= kq=3,5 ; f=50 ; dq=2 ; d=0,13 ; dkd=0,14 ; df=0,28 ; q=0,22) � � � � � � � � � �

  8. ’ � T1 � T F (p)= V � V � � 1 - �� 2 (J/NP) � n p(p+ w) � - - � T �� F (p)= � �� N (p) � F (p)=D (p) � � � T � (Note: �� r = �� -p �� )

  9. Im p 1 0,1 0,05 ( o=; d= q=10 ; kd= kq=10 ; dq=6 ; d= q=0,15) � � � � � � � �

  10. Im p Im p 0,1 0,1 0,05 0,05 0,01 0,2 0,1 0,3 0,4 0,1 0,2 ( �� =0,1; � d= q= kd= kq= 5; � � � ( �� =0,1; � d= q=5 ; kd= kq=10; � � � � � �� dq= ; � q=0, ��� � dq=6 ; ����� q=0,15) d d (a) (b)

  11. 50 o kd 30 ���� 20 10 5 3 2 1 � dq=4 � dq=3 0.5 � dq=2 0.3 � dq=1 0.2 ( dq = dkd = kdkq =1) � � � 0.1 0.1 0.2 0.3 0.5 1 2 3 5 10 20 30 50 100 2 2 � � kd m

  12. 50 o kd 30 ���� 20 10 5 3 2 1 � d=0.12 0.5 � d=0.06 � d=0.02 0.3 ( dq=4; dq = dkd = kdkq =1) 0.2 � � � � 0.1 0.1 0.2 0.3 0.5 1 2 3 5 10 20 30 50 100 2 2 � � kd m

  13. 50 o kd 30 ���� 20 100kW 10kW 10 5 1kW 3 100W 2 � =-20º 1 � =-5º � =20º 0,5 � =5º 0.3 � =0º 0.2 � ( dq=4; � d=0.12; � dq = � dkd = � kdkq =1) 0.1 0.1 0.2 0.3 0.5 1 2 3 5 10 20 30 50 100 2 2 � � kd m

  14. Im � Im � � =p r � � =p r � 10 0,1 � � � r=10 � � � r=0.1 0 0 1 0,5 2 -Re � -Re � 0,1 ev=Epo/Vo=1 ; =0 � ev=Epo/Vo=1 ; =0 � ev > 1 and/or � > 0 ev > 1 and low | | � ev < 1 and/or � < 0 ev < 1 and/or high | | � (a) (b)

  15. 50 30 o r ���� 20 100kW 10kW 10 1kW 5 3 100W 2 1 Epo/Vo=1,5 0.5 Epo/Vo=1 0.3 Epo/Vo=0,5 Epo/Vo=0 0.2 ( =0.04 ; � � =1 ; =0) � 0.1 0.1 0.2 0.3 0.5 1 2 3 5 10 20 30 50 100 2 2 � � r m

  16. 50 o r ���� 30 20 10 5 3 2 1 � =-20º � =20º 0.5 � =0º 0.3 ( =1 ; � � =0.08 ; Epo /Vo=1.5) 0.2 0.1 0.1 0.2 0.3 0.5 1 2 3 5 10 20 30 50 100 2 2 � � r m

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend