autumn 15 radia on and radia on detectors
play

Autumn%2015 ! Radia&on!and!Radia&on!Detectors! ! - PowerPoint PPT Presentation

PHYS%575% Autumn%2015 ! Radia&on!and!Radia&on!Detectors! ! Course!home!page: ! h6p://depts.washington.edu/physcert/radcert/575website/ % 5:!cross!sec&ons,!a6enua&on;!calorimetry;!!


  1. PHYS%575% Autumn%2015 ! Radia&on!and!Radia&on!Detectors! ! Course!home!page: ! h6p://depts.washington.edu/physcert/radcert/575website/ % 5:!cross!sec&ons,!a6enua&on;!calorimetry;!! coun&ng!sta&s&cs;!sta&s&cs!for!analysis! R.%Jeffrey%Wilkes%% Department%of%Physics% B305%PhysicsEAstronomy%Building% 206E543E4232 % wilkes@u.washington.edu%

  2. Course%calendar% Tonight % 2%

  3. Announcements% • All%but%2%have%sent%me%proposed%topics% • PresentaPon%dates:%Tues%Dec%1,%Tues%Dec%8,%and%Thurs%Dec%10% – See%class%web%page%for%link%to%signup%sheet% % I%will%arbitrarily%assign%slots%for%those%not%signed%up%by%November%29%% As%of%today:% %% 11/3/15% 3%

  4. Colloquium%of%interest % See%sharepoint.washington.edu/phys/newsevents/Pages/ViewEEvent.aspx? • eid=4702% – Any%week:%Go%to%Physics%Dept%home%page,%click%on% events ,% events %/% this(week( ;%every% Monday%there%is%a%generalEinterest%colloquium%open%to%the%public,%in%AE102% Watch%the%talk % Small town near Fukushima (post-tsunami nuclear reactor disaster in March, 2011) took steps to protect its citizens, independent of central government: distributed sodium- iodide pills, dosimeters for school children. 11/3/15% 4%

  5. ChiEsquared%distribuPon% Last time N ( x i − µ ) 2 0.3 χ 2 ≡ ∑ , sum of deviations squared, in units of σ 2 σ 2 0.25 i = 1 � =1 1 2 ν /2 Γ ( ν / 2)( χ 2 ) ν /2 − 1 exp( − χ 2 / 2) p ( χ 2 ; ν ) = 0.2 2 p( χ 2 ; ν ) f(x) 0.15 = χ 2 PDF for ν degrees of freedom 5 0.1 10 ν = number of independent variables in sum 0.05 Example:%if%we%average%N%data%points%to%esPmate% µ, ν =NE1% χ 2 0 • Chisq%distribuPon%is% 0 2 4 6 8 10 12 14 16 18 – Monotone%decreasing%for% ν <2% x – Peaks%at% ν E2%for% ν >%2% 0.03 – Has%mean= ν , σ 2 =2 ν %and% ! %N( ν ,2 ν ) for% ν %E>% � %% 0.025 � =100 2 χ α %% p(chisq; N=100) 0.02 2 ; ν ) = p ( χ 2 ; ν ) d χ 2 ∫ Integral distribution: P ( χ α = 1 − α 0.015 0 So χ 2 > χ α 2 occurs with probability = α 0.01 0.005 Use to test for N( µ , σ 2 ) behavior: 0 60 70 80 90 100 110 120 130 140 Example: test hypothesis that { x i } come from N( µ , σ 2 ) chisq N ( x i − x ) 2 2 ( ν = N − 1) Then we should have χ 2 ≡ Area = prob that χ 2 will ∑ ≤ χ α p( χ 2 ; ν ) σ 2 randomly be > χ α 2 i = 1 to have confidence level α in our hypothesis χ 2 2 ≅ ν → χ 2 2 χ α Rule of thumb: for ν ≥ 10, ν ≈ 1 is 50% probable χ 0.5 5

  6. Example:%counPng%staPsPcs%and%limits%of%detectability % How%can%we%tell%if%a%significant%signal%exists%in%the%presence%of%background?%% • N T %=%number%of%counts%observed%in%Pme%T,%% N B %=%background%counts%(measured%in%a%separate%run,%with%no%source),%%% then%N T %=%N S %+%N B %%where%N S %=%true%signal%counts% Case%where%N S %>>%N B %is%trivial,%but%what%if%N S %~%N B% ?% Assume%T%is%long%enough%so%all%count%values%are% � not%small �� (%>5)% Then%we%expect%N � s%to%be%GaussianEdistributed,%with% σ %= √ %N% % %N S %=%N T %E%N B %,%so%% σ ! S 2 !=! σ ! T 2 !+! σ ! B 2 ! % – Suppose%there%is (no(real(ac0vity %present,%so%N S %really%=%0%% • % σ % T 2 %=% σ % B 2 %so%% σ % S 2 %=% 2 % σ % B 2 %%or% σ % S %=% √ ( 2 N B )% So%we%expect%N S %to%be%drawn%from%a%Gaussian%centered%on%0%with%width% σ % S %=% √ ( 2 N B )% Then%we%should%reject%hypothesis%that%there%is%no%acPvity%present%if%% %N T %>%L C% %=% � cut%level � %for%decision% What%should%L C% %be?%

  7. Cuts%and%significance%level%decisions % We%set%L C% %by%deciding%on%a% significance(level( =%acceptable%probability%for%being% fooled%by%a%random%fluctuaPon%( � Type%1%error � ,%falseEposiPve%rate)% If%we%want,%eg,%%<5%%probability%of%false%posiPve%result,%we%must%set%L C% %at%the%5%% tail%of%Gaussian%distribuPon.% Separate%issue:%rejecPng%hypothesis%when%it%is%actually%true%( � Type%2%error � ,%miss% rate,%falseEalarm%rate)%–%more%later% 1000 experiments with mean count 0 and standard deviation 3.5 Harder!case :%Suppose%real%acPvity%is% present,%but%below%background%level,%% 120 100.00% so%N S %actually%>%0%(but%<<%N B )% 100 80.00% N T %is%larger%than%N B %,%but%by%very%limle!% 80 Frequency 60.00% % 60 • For%a%provocaPve%look%at%staPsPcal% 40.00% 40 dilemma%posed%by%lowEsignal% 20.00% 20 experiments,%see%talk%by%Gary%Feldman% 0 .00% at% e 9 7 5 3 1 1 3 5 7 9 r - - - - - o M http://www.hepl.harvard.edu/~feldman/Journeys.pdf N S

  8. Gas%ionizaPon%detectors% • Gaseous%ionizaPon%detectors%have%many%applicaPons%in% nuclear%/%parPcle%physics%experiments% – Charged%parPcles%leave%ionizaPon%trail%in%a%gas%volume%% • IonEelectron%pairs%produced%by%charged%parPcle%collisions%with%atomic%e’s% • Electrons%are%collected%on%an%anode%wire%(and/or%ions%on%cathode)% • Random%process%with%mean%free%path%between%collisions%given%by%% λ=1/(N e σ e ),%where%σ e %=%collision%crossEsecPon%per%electron%and%N e %=%e%density% • The%mean%number%of%collisions%per%unit%length%is%L/λ%% • Original%electrons%may%be%accelerated%by%E%field%and%cascade%before% collecPon:%gas%amplificaPon% • Gas%detectors%can%provide%precise%measurements%of%spaPal% coordinates%on%charged%parPcle%tracks%% – Low%density%gas%causes%limle%scamering% – Coordinate%measurements%of%less%than%0.1%mm%are%possible%% – DetecPon%efficiencies%(N tracks%detected /N actual )%%99%%or%bemer%are%possible% 11/3/15% 8%

  9. Categories%of%gas%ionizaPon%detectors% Classify%by%gas%amplificaPon%factor,%which%depends%on%voltage%gradient%used% IonizaPon%detectors% • – RelaPvely%low%E%field%between%electrodes%–%does%not%mulPply%electrons% – Useful%in%highErate%applicaPons%(eg,%beam%monitors)%where%signal%is%large,%or% for%precision%measurements%(eg,%calibraPons)%% – Output%charge%is%direct%measure%of%ionizaPon%deposited % • Directly%related%to%parPcle%properPes%(charge,%mass,%speed)% • Useful%for%calibraPon%or%parPcle%idenPficaPon,%but%small%signals% • ProporPonal%counters% – Moderate%voltage%accelerates%electrons,%small%electron%amplificaPon%factor% • %output%signal%remains%proporPonal%to%original%ionizaPon%deposited% – High%efficiency%E%small%signals,%but%very%fast%output%and%recovery% Geiger%counters% • – High%voltage%accelerates%e’s,%causes%cascades% ! %gas%breakdown,%spark%path% • Binary%signal:%yes%or%no%–%properPes%of%original%track%are%lost%in%avalanche% – High%efficiency,%big%fat%signal%–%but%long%recovery%Pme%for%gas%(deadEPme)% % 11/3/15% 9%

  10. Gas%counters:%3%zones % 1. Ionization : low V, no multiplication 2. Proportional: linear behavior, signal proportional to original ionization 3. Geiger: breakdown, signal unrelated to original ionization 11/3/15% 10%

  11. IonizaPon%created%by%charged%parPcle%in%a%gas % • Assume:%Encounters%with%gas%atoms%are%random,%and%characterized%by% mean%free%path%(mfp)% λ =%avg%distance%between%collisions% Avg%number%of%collisions%along%path%length%x:%%<n>%=%x/ λ % • Collision%probability%is%Poisson%process:%exponenPal%distribuPon% • – P(x)%=probability%of% not %having%a%collision%in%distance%x% x dx – w%dx%=%probability%of% having %a%collision%between%x%and%x+dx% – So%%probability%of% not %interacPng%between%x%and%x+dx%% %is%P(x+dx)%=%P(x)[1%–%wdx]%%%%{P%of%surviving%x}{P%of%surviving%dx}% – So%dP/dx=%EwP%%%%% – Applying%some%calculus%we%get%P(x)%=%Cexp(Ewx),%where%C=1%% Note%that%probability%of%collision%between%x%and%x+dx%a|er%no%collisions%in% distance%x%is%exp(Ewx)dx%%% • Mean%distance%between%collisions% λ =%1/w%% • From%definiPon%of%a%cross%secPon,%w=N σ % ! % λ = %1/N σ % ' 11/3/15 11%

  12. IonizaPon%Mechanisms% • Primary(ioniza0on %caused%by%detected%parPcle% • Secondary(ioniza0on( due%to% – IonizaPon%electron%colliding%with%neighboring%atoms% e E A% ! %e E A + e E ,%.%.%.%.%% – Intermediate%excited%states%A * %of%atom%in%a%gas%molecule% • e E A% ! %e E A *% ,%followed%%by%A * B% ! %AB + e E%% – IonizaPon%caused%by%UV%photons%emimed%when%excited%states%relax,%eg%% A * % ! %A % %+% γ ' • Mean%energy%to%create%an%ionEelectron%pair%is%~%20E30%eV% – Examples:%%%Ar%%%%%CO 2%%%% Air%%%H 2 O%%%{Ar(99.6%)%+%C 2 H 6 (0.4%),%ArEethane}%%% %%%%%%%%% %26eV%%%%33%%%%%35%%%%30%%%%%%%%%%%%%%%%%%%%20 11/3/15 12%

  13. Electron%yields% • The%number%of%collisions,%k,%in%a%distance%L%is%Poisson% distributed%with%frequency%distribuPon%% P(L/ λ ,k)%=%(1/k!)(L/ λ ) k exp(EL/ λ )% – The%probability%of%at%least%one%ionizing%collision%is%1%–%exp(L/ λ )% – Yield%of%ionizing%collisions%for%minimum%ionizing%parPcles%(m.i.p.)%are% shown%in%the%table%below% Gases at STP, t 99 is thickness of gas layer for 99% efficiency, and last column gives average number of free electrons produced by a m.i.p. 11/3/15 13%

  14. IonizaPon%chamber%applicaPons % • Air%IonizaPon%Dosimeters% Lauritsen pocket dosimeter (c. 1937) – quartzEfiber%electroscopes% • One%of%the%earliest%radiaPon%detectors:%measure%ionizaPon%in%air% by%rate%of%discharge%of%sensiPve%electroscope% • Wulf%Electroscope%(c.%1900)% Fluke%451%Ion%chamber%survey%meter% 349%cc%air%volume%% Observe ionizaPon%Chamber%wall:%% spacing of 246%mg/cm2%thick%phenolic%% threads decrease as Chamber%window:%% charge leaks 6.6%mg/cm2%Mylar% away Initially- charged Measures%Alphas%above%7.5%MeV,%% silk Beta%above%100%keV,%and%% threads Gamma%above%7%keV%% 11/3/15% 14%

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend