authority and co cite hub and co reference
play

Authority and Co-cite, Hub and Co-reference Given the adjacency - PowerPoint PPT Presentation

Authority and Co-cite, Hub and Co-reference Given the adjacency matrix A (with entries 0 or 1) a i = A T Aa i 1 a i = ( A T A ) i a 0 h i = AA T h i 1 h i = ( AA T ) i h 0 Co-citation: the number of pages co-cite P i and P j Co-reference:


  1. Authority and Co-cite, Hub and Co-reference Given the adjacency matrix A (with entries 0 or 1) a i = A T Aa i − 1 a i = ( A T A ) i a 0 h i = AA T h i − 1 h i = ( AA T ) i h 0 Co-citation: the number of pages co-cite P i and P j Co-reference: the number of pages co-referenced by P i and P j . A T A = D + C where C is the matrix of co-citation and D = diag ( d 1 , d 2 , · · · , d j ) � A ki A kj = ( A T A ) ij = C ij k = 0 C ii � � A ki A ki = ( A T A ) ii d i = A ki = k k A T A = D + C , AA T = O + R

  2. Authority and Co-cite, Hub and Co-reference Given the adjacency matrix A (with entries 0 or 1) a i = A T Aa i − 1 a i = ( A T A ) i a 0 h i = AA T h i − 1 h i = ( AA T ) i h 0 Co-citation: the number of pages co-cite P i and P j Co-reference: the number of pages co-referenced by P i and P j . A T A = D + C where C is the matrix of co-citation and D = diag ( d 1 , d 2 , · · · , d j ) � A ki A kj = ( A T A ) ij = C ij k = 0 C ii � � A ki A ki = ( A T A ) ii d i = A ki = k k A T A = D + C , AA T = O + R

  3. Authority and Co-cite, Hub and Co-reference Given the adjacency matrix A (with entries 0 or 1) a i = A T Aa i − 1 a i = ( A T A ) i a 0 h i = AA T h i − 1 h i = ( AA T ) i h 0 Co-citation: the number of pages co-cite P i and P j Co-reference: the number of pages co-referenced by P i and P j . A T A = D + C where C is the matrix of co-citation and D = diag ( d 1 , d 2 , · · · , d j ) � A ki A kj = ( A T A ) ij = C ij k = 0 C ii � � A ki A ki = ( A T A ) ii d i = A ki = k k A T A = D + C , AA T = O + R

  4. Authority and Co-cite, Hub and Co-reference Given the adjacency matrix A (with entries 0 or 1) a i = A T Aa i − 1 a i = ( A T A ) i a 0 h i = AA T h i − 1 h i = ( AA T ) i h 0 Co-citation: the number of pages co-cite P i and P j Co-reference: the number of pages co-referenced by P i and P j . A T A = D + C where C is the matrix of co-citation and D = diag ( d 1 , d 2 , · · · , d j ) � A ki A kj = ( A T A ) ij = C ij k = 0 C ii � � A ki A ki = ( A T A ) ii d i = A ki = k k A T A = D + C , AA T = O + R

  5. Probabilistic analysis Expected value of co-citation/co-reference For a fixed degree sequence random graphs d i d k E ( C ik ) = n − 1 o i o k E ( R ik ) = n − 1 The node with large indegree d i tend to have large co-citations with other nodes. E ( A T A ) = E ( D ) + E ( C ) = diag ( h 1 , h 2 , · · · , h n ) + dd T / n − 1 where h i ≡ d i − d 2 i / ( n − 1) and d = ( d 1 , d 2 , · · · , d n ) T .

  6. Probabilistic analysis Expected value of co-citation/co-reference For a fixed degree sequence random graphs d i d k E ( C ik ) = n − 1 o i o k E ( R ik ) = n − 1 The node with large indegree d i tend to have large co-citations with other nodes. E ( A T A ) = E ( D ) + E ( C ) = diag ( h 1 , h 2 , · · · , h n ) + dd T / n − 1 where h i ≡ d i − d 2 i / ( n − 1) and d = ( d 1 , d 2 , · · · , d n ) T .

  7. Spectral Decomposition of Diagonal Plus Rank-1 matrices Let M = D + cc T , D is a diagonal n × n matrix of the block form: D = diag ( τ 1 I 1 , τ 2 I 2 , · · · , τ l I l ) where I k is the identity matrix of size n k , τ 1 > τ 2 > · · · > τ l Then , the eigenvalues of M are given by τ 1 > τ 1 = · · · = τ 1 ˆ � > ˆ τ 2 > τ 2 = · · · = τ 2 � > · · · > ˆ τ l > τ l = · · · = τ l � �� � �� � �� � and the eigenvector of A corresponds to the eigenvalue ˆ τ k is c T c T c T 1 2 l ) T . ( , , · · · , τ 1 − τ 1 ˆ τ 2 − τ 2 ˆ τ l − τ l ˆ The eigenvector corresponds to τ k is of the form (0 · · · 0 , u T k , 0 · · · 0) T where u k is a vector of n k satisfying c T k u k = 0.

  8. Average Analysis of HITS E ( A T A ) = E ( D ) + E ( C ) = diag ( h 1 , h 2 , · · · , h n ) + dd T / n − 1 where h i ≡ d i − d 2 i / ( n − 1) and d = ( d 1 , d 2 , · · · , d n ) T . If h 1 > h 2 > · · · > h m ≥ h m +1 ≥ · · · ≥ h n , Then, the m largest eigenvalues λ i satisfying λ 1 > h 1 > λ 2 > h 2 > · · · > λ m > h m the corresponding eigenvectors are d 1 d 2 d n u k = ( , , · · · , ) λ k − h 1 λ k − h 2 λ k − h n Prerequisite h i − h j = ( d i − d j )[1 − ( d i + d j ) / ( n − 1)] > 0 as long as d 1 > · · · > d m > d m +1 ≥ d m +1 ≥ d m +2 · · · ≥ d n and d i + d j < n − 1 for ∀ i , j

  9. Average Analysis of HITS E ( A T A ) = E ( D ) + E ( C ) = diag ( h 1 , h 2 , · · · , h n ) + dd T / n − 1 where h i ≡ d i − d 2 i / ( n − 1) and d = ( d 1 , d 2 , · · · , d n ) T . If h 1 > h 2 > · · · > h m ≥ h m +1 ≥ · · · ≥ h n , Then, the m largest eigenvalues λ i satisfying λ 1 > h 1 > λ 2 > h 2 > · · · > λ m > h m the corresponding eigenvectors are d 1 d 2 d n u k = ( , , · · · , ) λ k − h 1 λ k − h 2 λ k − h n Prerequisite h i − h j = ( d i − d j )[1 − ( d i + d j ) / ( n − 1)] > 0 as long as d 1 > · · · > d m > d m +1 ≥ d m +1 ≥ d m +2 · · · ≥ d n and d i + d j < n − 1 for ∀ i , j

  10. Average Analysis of HITS E ( A T A ) = E ( D ) + E ( C ) = diag ( h 1 , h 2 , · · · , h n ) + dd T / n − 1 where h i ≡ d i − d 2 i / ( n − 1) and d = ( d 1 , d 2 , · · · , d n ) T . If h 1 > h 2 > · · · > h m ≥ h m +1 ≥ · · · ≥ h n , Then, the m largest eigenvalues λ i satisfying λ 1 > h 1 > λ 2 > h 2 > · · · > λ m > h m the corresponding eigenvectors are d 1 d 2 d n u k = ( , , · · · , ) λ k − h 1 λ k − h 2 λ k − h n Prerequisite h i − h j = ( d i − d j )[1 − ( d i + d j ) / ( n − 1)] > 0 as long as d 1 > · · · > d m > d m +1 ≥ d m +1 ≥ d m +2 · · · ≥ d n and d i + d j < n − 1 for ∀ i , j

  11. Eigenvectors

  12. HITS = ranking according to indegrees?? For any i < j d i d j u 1 ( i ) − u 1 ( j ) = − λ 1 − h i lambda 1 − h j ( d i − d j )[ λ 1 − d i d j / ( n − 1)] = ( λ 1 − h i )( λ − h j ) 0 ≥ as λ 1 − d i d j / ( n − 1) > h i − d i d j / ( n − 1) = d i (1 − d i + d j n − 1 ) > 0 What’s the nature of AVERAGE? The authority ranking is, ON AVERAGE, identical to the ranking according to web page indegrees.

  13. HITS = ranking according to indegrees?? For any i < j d i d j u 1 ( i ) − u 1 ( j ) = − λ 1 − h i lambda 1 − h j ( d i − d j )[ λ 1 − d i d j / ( n − 1)] = ( λ 1 − h i )( λ − h j ) 0 ≥ as λ 1 − d i d j / ( n − 1) > h i − d i d j / ( n − 1) = d i (1 − d i + d j n − 1 ) > 0 What’s the nature of AVERAGE? The authority ranking is, ON AVERAGE, identical to the ranking according to web page indegrees.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend