au autoenc ncoders
play

Au Autoenc ncoders Prof. Leal-Taix and Prof. Niessner 1 Mac - PowerPoint PPT Presentation

Au Autoenc ncoders Prof. Leal-Taix and Prof. Niessner 1 Mac Machine e lear earning Unsupervised learning Supervised learning Labels or target classes Goal: learn a mapping from input to label Classification,


  1. Au Autoenc ncoders Prof. Leal-Taixé and Prof. Niessner 1

  2. Mac Machine e lear earning Unsupervised learning Supervised learning Labels or target • classes • Goal: learn a mapping from input to label Classification, • regression Prof. Leal-Taixé and Prof. Niessner 2

  3. Mac Machine e lear earning Unsupervised learning Supervised learning CAT DOG DOG CAT CAT DOG Prof. Leal-Taixé and Prof. Niessner 3

  4. Mac Machine e lear earning Unsupervised learning Supervised learning CAT No label or target class • • Find out properties of DOG DOG the structure of the data Clustering (k-means, • CAT PCA) CAT DOG Prof. Leal-Taixé and Prof. Niessner 4

  5. Mac Machine e lear earning Unsupervised learning Supervised learning CAT DOG DOG CAT CAT DOG Prof. Leal-Taixé and Prof. Niessner 5

  6. Mac Machine e lear earning Unsupervised learning Supervised learning CAT DOG DOG CAT CAT DOG Prof. Leal-Taixé and Prof. Niessner 6

  7. Un Unsupervi vised le learning with au autoenc ncoders Prof. Leal-Taixé and Prof. Niessner 7

  8. Au Auto toenc ncoders • Unsupervised approach for learning a lower- dimensional feature representation from unlabeled training data Prof. Leal-Taixé and Prof. Niessner 8

  9. Au Auto toenc ncoders • From an input image to a feature representation (bottleneck layer) x • Encoder: a CNN in our case z Input Image Conv Prof. Leal-Taixé and Prof. Niessner 9

  10. Au Auto toenc ncoders • Why do we need this dimensionality reduction? • To capture the patterns, the most meaningful factors of variation in our data • Other dimensionality reduction methods? Prof. Leal-Taixé and Prof. Niessner 10

  11. Au Auto toenc ncoder: tr traini ning ng Reconstruction Loss (like L1, L2) Input Image Output Image Conv Transpose Conv Prof. Leal-Taixé and Prof. Niessner 11

  12. Au Auto toenc ncoder: tr traini ning ng Input images Reconstruction x’ Input x Reconstructed images Latent space z dim (z) < dim (x) Prof. Leal-Taixé and Prof. Niessner 12

  13. Au Auto toenc ncoder: tr traini ning ng • No labels required Reconstruction x’ • We can use unlabeled data to Input x first get its structure Latent space z dim (z) < dim (x) Prof. Leal-Taixé and Prof. Niessner 13

  14. Au Auto toenc ncoder: Use : Use C Case ses Embedding of MNIST numbers Prof. Leal-Taixé and Prof. Niessner 14

  15. Au Auto toenc ncoder for pre-tr traini ning ng • Test case: medical applications based on CT images – Large set of unlabeled data. – Small set of labeled data. • We cannot do: take a network pre-trained on ImageNet. Why? • The image features are different CT vs natural images Prof. Leal-Taixé and Prof. Niessner 15

  16. Au Auto toenc ncoder for pre-tr traini ning ng • Test case: medical applications based on CT images – Large set of unlabeled data. – Small set of labeled data. • We can do: pre-train our network using an autoencoder to “learn” the type of features present in CT images Prof. Leal-Taixé and Prof. Niessner 16

  17. Au Auto toenc ncoder for pre-tr traini ning ng • Step 1: Unsupersived training with autoencoders Reconstruction Input Prof. Leal-Taixé and Prof. Niessner 17

  18. Au Auto toenc ncoder for pre-tr traini ning ng • Step 2: Supervised training with the labeled data Reconstruction Input Throw away the decoder Prof. Leal-Taixé and Prof. Niessner 18

  19. Auto Au toenc ncoder for pre-tr traini ning ng • Step 2: Supervised training with the labeled data Backprop x y as always Loss z Input y ∗ Ground truth labels for supervised learning Prof. Leal-Taixé and Prof. Niessner 19

  20. Wh Why usi using au autoen oencoder oders? • Use 1: pre-training, as mentioned before – Image à same image reconstructed – Use the encoder as “feature extractor” • Use 2: Use them to get pixel-wise predictions – Image à semantic segmentation – Low-resolution image à High-resolution image – Image à Depth map Prof. Leal-Taixé and Prof. Niessner 20

  21. Au Autoenc ncoders fo for pi pixel xel-wis wise predic ictio ions ns Prof. Leal-Taixé and Prof. Niessner 21

  22. Se Semanti ntic c Se Segmenta ntati tion n (FCN) • Recall the Fully Convolutional Networks Can we do better? Prof. Leal-Taixé and Prof. Niessner [Long et al. 15] Fully Convolutional Networks for Semantic Segmetnation (FCN) 22

  23. Se SegNet Badrinarayanan et al. „SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation“. TPAMI 2016 Prof. Leal-Taixé and Prof. Niessner 23

  24. Se SegNet • Enc Encoder : normal convolutional filters + pooling • De Decoder : Upsampling + convolutional filters Badrinarayanan et al. „SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation“. TPAMI 2016 Prof. Leal-Taixé and Prof. Niessner 24

  25. Se SegNet • Enc Encoder : normal convolutional filters + pooling • De Decoder : Upsampling + convolutional filters Badrinarayanan et al. „SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation“. TPAMI 2016 Prof. Leal-Taixé and Prof. Niessner 25

  26. Se SegNet • Enc Encoder : normal convolutional filters + pooling • De Decoder : Upsampling + convolutional filters • The convolutional filters in the decoder are learned using backprop and their goal is to refine the upsampling Badrinarayanan et al. „SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation“. TPAMI 2016 Prof. Leal-Taixé and Prof. Niessner 26

  27. Rec Recal all tran anspos osed ed con onvol olution on • Transposed convolution Output 5x5 - Unpooling - Convolution filter (learned) - Also called up-convolution (never deconvolution) Input 3x3 Prof. Leal-Taixé and Prof. Niessner 27

  28. Se SegNet • Enc Encoder : normal convolutional filters + pooling • De Decoder : Upsampling + convolutional filters ax layer: The output of the soft-max classifier is • Softmax a K channel image of probabilities where K is the number of classes. Badrinarayanan et al. „SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation“. TPAMI 2016 Prof. Leal-Taixé and Prof. Niessner 28

  29. Upsampli ling Prof. Leal-Taixé and Prof. Niessner 29

  30. Ty Types of upsa upsampl plings gs • 1. Interpolation ? Prof. Leal-Taixé and Prof. Niessner 30

  31. Ty Types of upsa upsampl plings gs • 1. Interpolation Original image Nearest neighbor interpolation Bilinear interpolation Bicubic interpolation Prof. Leal-Taixé and Prof. Niessner 31 Image: Michael Guerzhoy

  32. Ty Types of upsa upsampl plings gs • 1. Interpolation Few artifacts Prof. Leal-Taixé and Prof. Niessner 32 Image: Michael Guerzhoy

  33. Ty Types of upsa upsampl plings gs • 2. Fixed unpooling efficient + CONVS A. Dosovitskiy, “Learning to Generate Chairs, Tables and Cars with Convolutional Networks“. TPAMI 2017 Prof. Leal-Taixé and Prof. Niessner 33

  34. Ty Types of upsa upsampl plings gs • 3. Unpooling: “à la DeconvNet” Keep the locations where the max came from Prof. Leal-Taixé and Prof. Niessner 34

  35. Ty Types of upsa upsampl plings gs • 3. Unpooling: “à la DeconvNet” Now: convolutional filters are LEARNED In DeConvNet: we convolve with the transpose of the learned filter Prof. Leal-Taixé and Prof. Niessner 35

  36. Ty Types of upsa upsampl plings gs • 3. Unpooling: “à la DeconvNet” Keep the details of the structures Prof. Leal-Taixé and Prof. Niessner 36

  37. U-Net o Net or s skip con connecti ection ons i s in au autoenc ncoders Prof. Leal-Taixé and Prof. Niessner 38

  38. Ski Skip Conne nnecti ctions ns • U-Net Pass the low- level information High-level information Recall ResNet O. Ronneberger et al. “U-Net: Convolutional Networks for Biomedical Image Segmentation”. MICCAI 2015 Prof. Leal-Taixé and Prof. Niessner 39

  39. Ski Skip Conne nnecti ctions ns • U-Net: zoom in append O. Ronneberger et al. “U-Net: Convolutional Networks for Biomedical Image Segmentation”. MICCAI 2015 Prof. Leal-Taixé and Prof. Niessner 40

  40. Ski Skip Conne nnecti ctions ns • Concatenation connections C. Hazirbas et al. “Deep depth from focus”. ACCV 2018 Prof. Leal-Taixé and Prof. Niessner 41

  41. Ski Skip Conne nnecti ctions ns • Widely used in Autoencoders • At what levels the skip connections are needed depends on your problem Prof. Leal-Taixé and Prof. Niessner 42

  42. Au Autoenc ncoders in in Vi Visi sion on Prof. Leal-Taixé and Prof. Niessner 43

  43. Se SegNet Badrinarayanan et al. „SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation“. TPAMI 2016 Prof. Leal-Taixé and Prof. Niessner 44

  44. Se SegNet Input Ground truth SegNet Badrinarayanan et al. „SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation“. TPAMI 2016 Prof. Leal-Taixé and Prof. Niessner 45

  45. Mon Monoc ocular ar dep depth • Unsupervised monocular depth estimation R. Garg et al. „Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue“ ECCV 2016 Prof. Leal-Taixé and Prof. Niessner 46

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend