atomic quantum sensors for tes0ng general rela0vity

Atomicquantumsensors fortes0nggeneralrela0vity? - PowerPoint PPT Presentation

Atomicquantumsensors fortes0nggeneralrela0vity? W.Ertmer&E.M.Rasel IQ/LUH Topics detec0onandobserva0onofgravita0onal waves,


  1. Atomic
quantum
sensors

 for
tes0ng
general
rela0vity
?
 W.
Ertmer
&
E.M.
Rasel
 IQ/LUH


  2. Topics
 • detec0on
and
observa0on
of
gravita0onal
 waves,
 • test
of
the
Lense‐Thirring
effect,
 • test
of
the
Weak
Equivalence
Principle.


  3. Atom
interferometer
 configura0on
 • detec0on
and
observa0on
of
gravita0onal
 waves:
 
 Phase
meter,
accelerometer
 • test
of
the
Lense‐Thirring
effect:
 
 Gyroscope
 • test
of
the
Weak
Equivalence
Principle:
 
 Differen5al
Accelerometer


  4. Gravita0onal
Waves


  5. 
 Strain
in
Space
Curvature 
 δ l • Abs.
length
varia0on
δl
increases
with
distance!

 • Free
test
bodies
will
change
their
rela0ve
distance
 • Transversal
waves


  6. Gravita0onal
Wave
Sources

 Ground‐based
detectors
observe
in
the
audio
band
 • Space
detectors
observe
low
frequencies
 • Audio band 1 Hz – 10 kHz Gravity-gradient wall on the ground 6


  7. GWD
today
and
in
future
 10 -19 (a) 3 r d G eneration LIGO 2005 (b) LCG T (c ) adv anc ed LIG O 10 -20 (d) adv anc ed Virgo h(f) [1/sqrt(Hz)] (e) LIG O (f) Virgo 10 -21 (g) G EO 600 (g) (f) GEO-HF 10 -22 2009 (e) 10 -23 (a) (d) Ad LIGO/Virgo NB (b) Advanced LIGO/Virgo (2014) (c) 10 -24 Credit: M.Punturo Einstein GW Telescope 10 -25 1 10 100 1000 10000 Frequency [Hz] 7


  8. The
Third
Genera0on

 The
Einstein
Gravita0onal
Telescope

 E.T.
 • Overall
beam
tube
length
~
30km
 • Underground
loca0on
 – 
 Reduce
seismic
noise
 – 
Reduce
gravity
gradient
noise
 – 
Low
frequency
suspensions
 • Cryogenic
 • Squeezing

 • QND
Readout
 8


  9. Can
atomic
sensors
contribute
?


  10. Combining
microscopic
and
 macroscopic
test
masses 


  11. Drag‐free
sensor
 |e 〉 〉 |g 〉 〉 5me
 Signal
at
the
output
ports

 S


 ∼ 
cos[( φ 3
 ‐
 φ 2 )‐( φ 2
 ‐ 
 φ 1 )]
 ( ) ΔΦ ≈ 2k eff hL sin ω GW T

  12. Coherent
Atomic
Beam
Spliier
 Posi0on
Sensi0vity

 Mirror:
Laboratory
System
 periodicity
 G
 Fringe
posi0on


  13. Replacement
of
drag‐free
sensor

 at
lowest
Fourier
frequencies

 


  14. averaging

 Scaling
factor
 Averaging
√T/ τ 
 Atomic
Temperature
an
issue
and
beam
spliier
velocity
:
T 2


  15. Performance
 Noise
limited
sensi5vity
 
GW‐ Sensors 


  16. 

 Need
for
Femto‐g 
 ONERA
(2003)
 With
cold
atoms
?


  17. ∂ ϕ 2 2 2 ( ) ( ) /( ) ΔΩ = Δ ϕ ∂ Ω Increasing
sensi6vity
 k 
 ‐ 
large
area
 Minimising
phase
noise
 Holger
Müller
(Berkeley): 

 ‐ Increasing
number
of
atoms
 Large
area
atom
interferometry
 ‐ Bea0ng
the
shot
noise

 ‐ Environmental
control
 → 
Space
 ‐ Ultrastable
lasers
(frequency,



intensity)
 Raman
Laser


  18. ∂ ϕ 2 2 2 ( ) ( ) /( ) ΔΩ = Δ ϕ ∂ Ω Increasing
sensi6vity
 k 
 ‐ 
large
area
 Minimising
phase
noise
 ‐ 
low
frequency
signal

 ‐ Increasing
number
of
atoms
 
long
interac0on
0mes

 ‐ Bea0ng
the
shot
noise

 
 → 
large
atomic
mass
 ‐ Environmental
control
 → 
Space
 
 → 
Space
 ‐ Ultrastable
lasers
(frequency,



intensity)
 ‐ 
ultra
cold
atoms
 ‐ 
Coherence
 Systema0cs
 Raman
Laser


  19. Seeking
for

 Quantum
Maier
 lowest
temperatures 
 in
Microgravity



  20. From Fountains to Large Facilities • Prototype experiments • 10m fountain or drop • Atom drop tower 100 m 10 m 1 m 22


  21. Recent
results:
Evolu0on
of
the
wave
 func0on

 Time-of-flight: 50, 100, 500 and 1000 ms

  22. Recent
results:
Evolu0on
of
the
wave
 func0on

 Time-of-flight: 50, 100, 500 and 1000 ms Evaporation over 1s 900 µ m 8000 - 10 000 atoms T < 10nK delocalised after 1s over 900 µ m

  23. Back‐of‐enevelope
es0mates

 for
atomic
phase
meter
 ( ) ΔΦ ≈ 2k eff hL sin ω GW T • S/N
limited
resolu0on:
1
to
10 ‐2 
mrad/√Hz
 
 

 
 
 
Newtonian
Noise
 • Scale
factor
for
displacements:
1.6
10 ‐6
 • Photon
recoil,
Mul0plica0on
factor:
10‐100
 
 

 
 
 
to
be
combined
with
high
S/N
 • 
Displacement
sensi0vity:
10 ‐9
 ‐10 ‐13 
m
 • Length,
Mul0plica0on
Factor:
100‐1000
m

 • T ≅ 1‐10
s
 Strain
sensi0vity
 10 ‐13 ‐10 ‐16


  24. detec0on
and
observa0on
of
 gravita0onal
waves
on
ground
 • Suspension
„free“
gravita0onal
wave
detector
 • Sensi0vity
iden0cal
to
light
interferometer:
 
„Phase
meter“
 • Newtonian
Noise
is
fundamental
barrier
 • Combining
sensors
at
different
Fourier
 frequencies
(light
and
maier
interferometer)
 • You
need
a
pair
of
detectors
for
signal
correla0on



  25. detec0on
and
observa0on
of
 gravita0onal
waves
on
ground
 Many
„Firsts“
to
be
demonstrated
 • High‐frequency
source
for
ultracold
(BEC)
atoms
(10Hz
 rate)
 • Combining
high‐recoil
beam
spliiers
with
high
phase
 resolu0on
 • Sub‐mrad
resolu0on
per
shot
 • Novel
microwave
sources
&
ultra
stable
lasers
 • Control
of
systema0c
errors
 • ...


  26. detec0on
and
observa0on
of
 gravita0onal
waves
in
space
 • Control
of
drag‐free
sensor
at
lowest
Fourier
 frequencies


 • Replacement
of
the
drag‐free
sensor
for
 measurements
at
lowest
Fourier
frequencies.


  27. …with
cold
atoms
 
Towards
the
limits


 Accelera5onal
Sensi5vity
with
10
 8
 ats:

 Microgravity
10 ‐12 
 g/ √ Hz
@
Expansion
Time
3
s
 Rota5onal
Sensi5vity
with
10 
8
 ats:

 Microgravity:
8 ⋅ 10 ‐12
 rad/√Hz
@
Expansion
Time
3
s


  28. Benefits
of
µ‐gravity
environment 
 Extended
Time
of
Evolu6on
 Iner0al
Quantum
Sensors 
 Rota0onal
Phase
ship
    Δ ϕ rot = 2 m Atom Ω ∝ T 2 Ω  A ⋅  a Accellera0onal
Phase
ship
  Δ ϕ acc = T 2  k ⋅ a Sagnac
Interferometer


  29. Extended
Time
of
Evolu6on
 Increase
in
sensi0vity 
 kT 2
 Rota0onal
Phase
ship
   Δ ϕ rot = 2 m Atom ∝ T 2 Ω A ⋅  Accellera0onal
Phase
ship
  Δ ϕ acc = T 2  k ⋅ a Transportable
Cold
Rubidium
Sagnac
 Interferometer


  30. CASI


  31. CASI


  32. Coherent
beam
splirng


  33. Coherent
beam
splirng
 MIXER


  34. Velocity
selec0on


  35. Rb
Clock


  36. Rota0on
sensor
 10 ‐8 
rad/s√Hz


  37. VLBI
 Resolu0on:
 The
Earth‘s
rota0on:
 10 ‐8 
–
10 ‐9 
rad
in
 Ω E 
≈
7,2∙10 ‐5 
rad/s
 24
h
 
Rota0on
sensing


 Applica0ons:
 ‐ Inves0ga0on
of
the
 
Effects:
 Ω E
 Earth‘s
rota0on
 Resolu0on:
 10 ‐4 ‐ Geology
 
 10 ‐9 
rad
in






 ‐ seismology 
 10 ‐5 
 1
year

 Gravity
Probe
B
 ‐ Star
mo0on
 10 ‐6 
 10 ‐7 ‐ Satellite
naviga0on
 ‐ Tidal
forces 
 
 Resolu0on:
 10 ‐8 ‐ Varia0on
of
the
 
 ‐ Rela0vis0c
effects
 Earth‘s
rota0on 
 10 ‐10 
–
10 ‐11 
rad/ 10 ‐9 
 ‐ …
 s
√Hz ‐1
 10 ‐10 ‐ Rela0vis0c
Effects
 
 Ringlaser


  38. Resolu0on:
 The
Earth‘s
rota0on:
 10 ‐8 
–
10 ‐9 
rad
in
 Ω E 
≈
7,2∙10 ‐5 
rad/s
 24
h
 
Rota0on
sensing


 
Effects:
 Ω E
 10 ‐4 
 ‐ seismology 
 10 ‐5 
 10 ‐6 
 10 ‐7 ‐ Tidal
forces 
 
 10 ‐8 ‐ Varia0on
of
the
 
 Earth‘s
rota0on 
 10 ‐9 
 10 ‐10 ‐ Rela0vis0c
Effects
 


  39. Perspec0ves
 Quantum
sensors
 New
atom
interferometric
 • techniques
are
emerging
 Fundamental
limits
?
 • GWD:
 Bringing
free
fall
to
earth
 • Atom‐light
interferometer
is
the
 • most
realis0c
scenario
 Joint
Ac0ons
needed

 in
order
to
proceed
further
 for
 GAQS

 Gravita0onal
Wave
Atomic
Quantum
 Sensor



  40. ENOUGH
SPACE

FOR
EXCITING

 EXPERIMENTS


Recommend


More recommend