atomic quantum sensors for tes0ng general rela0vity
play

Atomicquantumsensors fortes0nggeneralrela0vity? - PowerPoint PPT Presentation

Atomicquantumsensors fortes0nggeneralrela0vity? W.Ertmer&E.M.Rasel IQ/LUH Topics detec0onandobserva0onofgravita0onal waves,


  1. Atomic
quantum
sensors

 for
tes0ng
general
rela0vity
?
 W.
Ertmer
&
E.M.
Rasel
 IQ/LUH


  2. Topics
 • detec0on
and
observa0on
of
gravita0onal
 waves,
 • test
of
the
Lense‐Thirring
effect,
 • test
of
the
Weak
Equivalence
Principle.


  3. Atom
interferometer
 configura0on
 • detec0on
and
observa0on
of
gravita0onal
 waves:
 
 Phase
meter,
accelerometer
 • test
of
the
Lense‐Thirring
effect:
 
 Gyroscope
 • test
of
the
Weak
Equivalence
Principle:
 
 Differen5al
Accelerometer


  4. Gravita0onal
Waves


  5. 
 Strain
in
Space
Curvature 
 δ l • Abs.
length
varia0on
δl
increases
with
distance!

 • Free
test
bodies
will
change
their
rela0ve
distance
 • Transversal
waves


  6. Gravita0onal
Wave
Sources

 Ground‐based
detectors
observe
in
the
audio
band
 • Space
detectors
observe
low
frequencies
 • Audio band 1 Hz – 10 kHz Gravity-gradient wall on the ground 6


  7. GWD
today
and
in
future
 10 -19 (a) 3 r d G eneration LIGO 2005 (b) LCG T (c ) adv anc ed LIG O 10 -20 (d) adv anc ed Virgo h(f) [1/sqrt(Hz)] (e) LIG O (f) Virgo 10 -21 (g) G EO 600 (g) (f) GEO-HF 10 -22 2009 (e) 10 -23 (a) (d) Ad LIGO/Virgo NB (b) Advanced LIGO/Virgo (2014) (c) 10 -24 Credit: M.Punturo Einstein GW Telescope 10 -25 1 10 100 1000 10000 Frequency [Hz] 7


  8. The
Third
Genera0on

 The
Einstein
Gravita0onal
Telescope

 E.T.
 • Overall
beam
tube
length
~
30km
 • Underground
loca0on
 – 
 Reduce
seismic
noise
 – 
Reduce
gravity
gradient
noise
 – 
Low
frequency
suspensions
 • Cryogenic
 • Squeezing

 • QND
Readout
 8


  9. Can
atomic
sensors
contribute
?


  10. Combining
microscopic
and
 macroscopic
test
masses 


  11. Drag‐free
sensor
 |e 〉 〉 |g 〉 〉 5me
 Signal
at
the
output
ports

 S


 ∼ 
cos[( φ 3
 ‐
 φ 2 )‐( φ 2
 ‐ 
 φ 1 )]
 ( ) ΔΦ ≈ 2k eff hL sin ω GW T

  12. Coherent
Atomic
Beam
Spliier
 Posi0on
Sensi0vity

 Mirror:
Laboratory
System
 periodicity
 G
 Fringe
posi0on


  13. Replacement
of
drag‐free
sensor

 at
lowest
Fourier
frequencies

 


  14. averaging

 Scaling
factor
 Averaging
√T/ τ 
 Atomic
Temperature
an
issue
and
beam
spliier
velocity
:
T 2


  15. Performance
 Noise
limited
sensi5vity
 
GW‐ Sensors 


  16. 

 Need
for
Femto‐g 
 ONERA
(2003)
 With
cold
atoms
?


  17. ∂ ϕ 2 2 2 ( ) ( ) /( ) ΔΩ = Δ ϕ ∂ Ω Increasing
sensi6vity
 k 
 ‐ 
large
area
 Minimising
phase
noise
 Holger
Müller
(Berkeley): 

 ‐ Increasing
number
of
atoms
 Large
area
atom
interferometry
 ‐ Bea0ng
the
shot
noise

 ‐ Environmental
control
 → 
Space
 ‐ Ultrastable
lasers
(frequency,



intensity)
 Raman
Laser


  18. ∂ ϕ 2 2 2 ( ) ( ) /( ) ΔΩ = Δ ϕ ∂ Ω Increasing
sensi6vity
 k 
 ‐ 
large
area
 Minimising
phase
noise
 ‐ 
low
frequency
signal

 ‐ Increasing
number
of
atoms
 
long
interac0on
0mes

 ‐ Bea0ng
the
shot
noise

 
 → 
large
atomic
mass
 ‐ Environmental
control
 → 
Space
 
 → 
Space
 ‐ Ultrastable
lasers
(frequency,



intensity)
 ‐ 
ultra
cold
atoms
 ‐ 
Coherence
 Systema0cs
 Raman
Laser


  19. Seeking
for

 Quantum
Maier
 lowest
temperatures 
 in
Microgravity



  20. From Fountains to Large Facilities • Prototype experiments • 10m fountain or drop • Atom drop tower 100 m 10 m 1 m 22


  21. Recent
results:
Evolu0on
of
the
wave
 func0on

 Time-of-flight: 50, 100, 500 and 1000 ms

  22. Recent
results:
Evolu0on
of
the
wave
 func0on

 Time-of-flight: 50, 100, 500 and 1000 ms Evaporation over 1s 900 µ m 8000 - 10 000 atoms T < 10nK delocalised after 1s over 900 µ m

  23. Back‐of‐enevelope
es0mates

 for
atomic
phase
meter
 ( ) ΔΦ ≈ 2k eff hL sin ω GW T • S/N
limited
resolu0on:
1
to
10 ‐2 
mrad/√Hz
 
 

 
 
 
Newtonian
Noise
 • Scale
factor
for
displacements:
1.6
10 ‐6
 • Photon
recoil,
Mul0plica0on
factor:
10‐100
 
 

 
 
 
to
be
combined
with
high
S/N
 • 
Displacement
sensi0vity:
10 ‐9
 ‐10 ‐13 
m
 • Length,
Mul0plica0on
Factor:
100‐1000
m

 • T ≅ 1‐10
s
 Strain
sensi0vity
 10 ‐13 ‐10 ‐16


  24. detec0on
and
observa0on
of
 gravita0onal
waves
on
ground
 • Suspension
„free“
gravita0onal
wave
detector
 • Sensi0vity
iden0cal
to
light
interferometer:
 
„Phase
meter“
 • Newtonian
Noise
is
fundamental
barrier
 • Combining
sensors
at
different
Fourier
 frequencies
(light
and
maier
interferometer)
 • You
need
a
pair
of
detectors
for
signal
correla0on



  25. detec0on
and
observa0on
of
 gravita0onal
waves
on
ground
 Many
„Firsts“
to
be
demonstrated
 • High‐frequency
source
for
ultracold
(BEC)
atoms
(10Hz
 rate)
 • Combining
high‐recoil
beam
spliiers
with
high
phase
 resolu0on
 • Sub‐mrad
resolu0on
per
shot
 • Novel
microwave
sources
&
ultra
stable
lasers
 • Control
of
systema0c
errors
 • ...


  26. detec0on
and
observa0on
of
 gravita0onal
waves
in
space
 • Control
of
drag‐free
sensor
at
lowest
Fourier
 frequencies


 • Replacement
of
the
drag‐free
sensor
for
 measurements
at
lowest
Fourier
frequencies.


  27. …with
cold
atoms
 
Towards
the
limits


 Accelera5onal
Sensi5vity
with
10
 8
 ats:

 Microgravity
10 ‐12 
 g/ √ Hz
@
Expansion
Time
3
s
 Rota5onal
Sensi5vity
with
10 
8
 ats:

 Microgravity:
8 ⋅ 10 ‐12
 rad/√Hz
@
Expansion
Time
3
s


  28. Benefits
of
µ‐gravity
environment 
 Extended
Time
of
Evolu6on
 Iner0al
Quantum
Sensors 
 Rota0onal
Phase
ship
    Δ ϕ rot = 2 m Atom Ω ∝ T 2 Ω  A ⋅  a Accellera0onal
Phase
ship
  Δ ϕ acc = T 2  k ⋅ a Sagnac
Interferometer


  29. Extended
Time
of
Evolu6on
 Increase
in
sensi0vity 
 kT 2
 Rota0onal
Phase
ship
   Δ ϕ rot = 2 m Atom ∝ T 2 Ω A ⋅  Accellera0onal
Phase
ship
  Δ ϕ acc = T 2  k ⋅ a Transportable
Cold
Rubidium
Sagnac
 Interferometer


  30. CASI


  31. CASI


  32. Coherent
beam
splirng


  33. Coherent
beam
splirng
 MIXER


  34. Velocity
selec0on


  35. Rb
Clock


  36. Rota0on
sensor
 10 ‐8 
rad/s√Hz


  37. VLBI
 Resolu0on:
 The
Earth‘s
rota0on:
 10 ‐8 
–
10 ‐9 
rad
in
 Ω E 
≈
7,2∙10 ‐5 
rad/s
 24
h
 
Rota0on
sensing


 Applica0ons:
 ‐ Inves0ga0on
of
the
 
Effects:
 Ω E
 Earth‘s
rota0on
 Resolu0on:
 10 ‐4 ‐ Geology
 
 10 ‐9 
rad
in






 ‐ seismology 
 10 ‐5 
 1
year

 Gravity
Probe
B
 ‐ Star
mo0on
 10 ‐6 
 10 ‐7 ‐ Satellite
naviga0on
 ‐ Tidal
forces 
 
 Resolu0on:
 10 ‐8 ‐ Varia0on
of
the
 
 ‐ Rela0vis0c
effects
 Earth‘s
rota0on 
 10 ‐10 
–
10 ‐11 
rad/ 10 ‐9 
 ‐ …
 s
√Hz ‐1
 10 ‐10 ‐ Rela0vis0c
Effects
 
 Ringlaser


  38. Resolu0on:
 The
Earth‘s
rota0on:
 10 ‐8 
–
10 ‐9 
rad
in
 Ω E 
≈
7,2∙10 ‐5 
rad/s
 24
h
 
Rota0on
sensing


 
Effects:
 Ω E
 10 ‐4 
 ‐ seismology 
 10 ‐5 
 10 ‐6 
 10 ‐7 ‐ Tidal
forces 
 
 10 ‐8 ‐ Varia0on
of
the
 
 Earth‘s
rota0on 
 10 ‐9 
 10 ‐10 ‐ Rela0vis0c
Effects
 


  39. Perspec0ves
 Quantum
sensors
 New
atom
interferometric
 • techniques
are
emerging
 Fundamental
limits
?
 • GWD:
 Bringing
free
fall
to
earth
 • Atom‐light
interferometer
is
the
 • most
realis0c
scenario
 Joint
Ac0ons
needed

 in
order
to
proceed
further
 for
 GAQS

 Gravita0onal
Wave
Atomic
Quantum
 Sensor



  40. ENOUGH
SPACE

FOR
EXCITING

 EXPERIMENTS


Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend