atmospheric nitrogen deposition
play

Atmospheric Nitrogen deposition Tibisay Prez tperez@ivic.gob.ve - PowerPoint PPT Presentation

Instituto Venezolano de Investigaciones Cientficas Atmospheric Nitrogen deposition Tibisay Prez tperez@ivic.gob.ve /tibisay.j.perez@gmail.com August 6 th , 2016. School of Advanced Science on nitrogen cycling, environmental sustainability


  1. Instituto Venezolano de Investigaciones Científicas Atmospheric Nitrogen deposition Tibisay Pérez tperez@ivic.gob.ve /tibisay.j.perez@gmail.com August 6 th , 2016. School of Advanced Science on nitrogen cycling, environmental sustainability and climate change. 31 July – 10 August 2016, São Pedro, SP – Brazil.

  2. hυ , Photolysis N 2 O NO O 3 O 2 Stratosphere and photooxidation Urea, Troposphere aminoacids Organic Nitrates Δ, hυ NO 3 radical COVs ,radical NO 3, O 3 COVs,OH, Δ, hυ hυ , O 3 (night) (day) O 3 NO 2 + M NO X (NO +NO 2 ) H 2 O (l) N 2 O 5 Emsssions surface Fotolysis ( hυ ) Lightning N 2 NO 2 NO HNO 3 CH 4, CO, RO 2 , Dry deposition (gases and aerosols) HO 2 OH, O 3 NH 4 Cl (s) OH H 2 O (NH 4 ) 2 SO 4 (s) NH 3 N fixation NH 4 NO 3 (s,l) - Wet and dry NO 3 deposition H 2 O Emissions Wet and dry deposition Wet deposition (gas and aerosols) Dry deposition Emissionss + NH 4 deposition Wet Terrestrial and oceanic surface TWSN = WSIN + WSON 2 (Slide borrowed from Rafael Rasse ‘s PhD thesis defense, Atkinson, 2000; Finlayson -Pitts and Pitts, 2000; Atkinson and Arey, 2003; Seinfeld and Pandis, 2006)

  3. Why N 2 O is so relevant after Montreal Protocol? Portmann, R. W. et al., (2012) Stratospheric ozone depletion due to nitrous oxide: influences of other gases. Phil. Trans. R. Soc. B (2012) 367, 1256 – 1264. doi:10.1098/rstb.2011.0377 .

  4. Natural ecosystems emitted N 2 O that is enriched in 15 N compared to fertilized soils 40 Stratosphere values 30 Ocean average 20 δ 15 N-N 2 O (‰) vs AIR Troposphere averg. 10 Natural soils Stratosphere averg. 0 -10 Source: -20 Perez et al., 2000, 2001; Rahn and Wahlen, 2000. -30 Toyoda et al 2001, 2002 and Agricultural soils -40 2011, Yamulki et al., 2001, -50 Bol et al 2003, -60 Park et al., 2004, , 2011, 0 10 20 30 40 50 60 70 2012 and references therein) δ 18 O-N 2 O (‰) vs VSMOW 4

  5. Tropospheric N 2 O isotope trend inferred from archived air samples from Cape Grim Decrease in δ 15 N Fertilizer use of 0.3 ‰/decade

  6. Hot spots of N 2 O found in permafrost peatlands Peat Circles Diameter 4 to 25 m Cover ≈ 4% the peat plateau Areas 10 to 500 m 2 Peat plateau covers ≈ 20% of Arctic and the total land area of the tundra zone (7.34 × 10 6 km 2 ) 6 18.8.2016

  7. Would the enhanced emissions from tundra pit circles shift tropospheric N 2 O isotopic composition? Study Site Discontinuous permafrost Subarctic East European tundra (62 ⁰ 57'E, 67 ⁰ 03'N) Annual precip. ≈ 505 mm Mean annual temp. ≈ -5.8 ° C Growing season: Mid Jun-August 7 18.8.2016

  8. Research Project DEFROST Graduate student Jenie Gil J. Gil 1 , T. Perez, K. Boering, P.J. Martikainen, C. Biasi Academy of Finland, project CryoN 2010-2014 European Union 7th Framework Program under project(DEFROST)-Nordic Centre of Excellence Program

  9. We wanted to know also which microbial/chemical processes contribute to the pit circleN 2 O production Bare peat soil profile Bare peat soil surface (Static chamber) 3 soil profile (PC1;PC2;PC3) 3 bare surface (PC1;PC2; PC3; 5 frames) [N 2 O]; [CO 2 ] N 2 O and CO 2 Fluxes δ 15 N 2 O; δ 18 O; 15 N-SP δ 15 N 2 O; δ 18 O; 15 N-SP [NH 4 ] ; [NO 3 ] and δ 15 N [NH 4 ] ; [NO 3 ] and δ 15 N Soil T; [O2]; soil moisture Soil environmental parameters Weather measurements

  10. Bare peats surface in sub-arctic tundra emit substantial amounts of N 2 O 0.1 to 3.4 mg N 2 O m -2 d -1 3,2 Tropical forests (0.09 – 2.5 mg N 2 O m -2 . d -1 ) (mg N 2 O. m -2 .d -1 ) Mean =1.2 ± 0.8 2,4 Drained boreal peatlands/agriculture 1,6 (0.1 – 15.1 mg N 2 O. m -2 . d -1 ) 0,8 2007 (1.9 – 31 mg N 2 O. m -2 . d -1 ) 2008 (3.7 – 13.9 mg N 2 O. m -2 . d -1 ) 0,0 PC1 PC2 PC3 -0,8 190 200 210 220 230 240 DOY Gil J., et al, Global Biogeochemical Cycles under final revisions

  11. The first data for δ 15 N bulk of N 2 O emitted from Arctic tundra so far… (B) (A) δ 18 O (-6 ‰ to 30‰) δ 15 N bulk ( -17 ‰ to -8 ‰ ) 10 50 44.2 ± 0.4‰ 5.66 ± 0.01‰ 40 5 δ 18 O-N 2 O (‰) vs VSMOW δ 15 N-N 2 O (‰) vs AIR 0 30 20 -5 -12 ± 3‰ -10 10 0 -15 -13.0 ± 2.0‰ -10 -20 190 200 210 220 230 240 190 200 210 220 230 240 PC1 PC2 DOY DOY PC3 Gil J., et al, Global Biogeochemical Cycles under final revisions

  12. Natural ecosystems emitted N 2 O that is enriched in 15 N compared to fertilized soils 40 Tundra Pit Circles 30 Stratosphere values Ocean average 20 δ 15 N-N 2 O (‰) vs AIR Troposphere averg. 10 Natural soils 0 Stratosphere averg. -10 Source: -20 Perez et al., 2000, 2001; Rahn and Wahlen, 2000. -30 Toyoda et al 2001, 2002 -40 Agricultural soils and 2011, Yamulki et al., 2001, -50 Bol et al 2003, Park et al., 2004, , 2011, -60 0 10 20 30 40 50 60 70 2012 and references therein) δ 18 O-N 2 O (‰) vs VSMOW 12 Gil J., et al, Global Biogeochemical Cycles under final revisions

  13. N 2 O isotope trend might slow down due to global warming of artic tundra Decrease in δ 15 N Fertilizer use of 0.3 ‰/decade

  14. Reactive Nitrogen (Nr) in the troposphere Ecosystem relevant nitrogen species Reactive nitrogen (Nr-trace levels) Organic Inorganic NH 3 Urea + NH 4 Aminoacids NO x (NO+NO 2 ) Proteins HNO 3 Nucleic acids N 2 O Organic nitrates Radical NO 3 Plant derived part + +NO 3 - +NO 2 - ): WSIN (NH 4 WSON: Water Water soluble inorganic soluble organic nitrogen nitrogen TOTAL DISSOLVED NITROGEN (TDN)=WSIN + WSON 14 (Neff et al., 2002. Biogeochemistry 57/58 ; Galloway et al., Biogeochemistry.2004. 70 )

  15. Why Nr matters on an global perspective Nr FLUXNET temperate evergreen needleleaf NEGATIVE forest sites. RADIATIVE NPP ↑ with ↑ nitrogen CO 2 FORCING deposition (up to 8Kg N/ha yr). Tropical forest (not N limited) sites need more GPP information particularly systematic Nr atmospheric deposition Net sink of network CO 2 More comprehensive measurements of nitrogen stocks and cycling at the global network of carbon monitoring sites are Fleischer et al., 2013, GBC 27 (1), 187 – 199. required

  16. All the Nr species have been considered? Neff, J. et al (2002). The origin, composition and rates of organic nitrogen deposition: A missing piece of the nitrogen cycle? Biogeochemistry 57/58: 99 – 136, 2002

  17. Relative contribution of WSON to Nr in wet deposition (32 ± 11)% WSON WSIN (32 ± 11)%

  18. Global reactive nitrogen (Nr) change through time 250 Emisiones a la atmósfera Nr emissions Nr atmospheric deposition Deposición atmosférica 200 Tg-N/yr 150 Tg-N/año 100 50 0 1860 1990 2050 1 2 3 WSON is not included (Galloway et al., 2004. Biogeochemitsry. 70)

  19. Bioavailability of WSON Plants Soil microbial decomposition Ocean Soils of bioavailable organic nitrogen Bioavailability of DON DON bioavailability Time of uptake References of DON (%) Estuarines 40-72 10-15 days Seitzinger and Sanders 1999 Days – weeks Aquatic Systems 12-72 Bronk 2002 Marine ecosystem 20-30 - Violaki et al., 2009 Marine ecosystem 46-80 - Wedyan et al., 2007 19 hours – few days Marine ecosystem 20-30 Peierls and Paerl, 1997

  20. Atmospheric chemistry- transport model (TM4- ECPL) • Organic nitrogen 60% anthropogenic. • Total N deposition estimate increases by about 20% relative to simulations without ON. • About 20-25% of total deposited N is ON. • About 10% of the emitted nitrogen oxides are deposited as ON instead of inorganic nitrogen(IN) as is considered in most global models. Kanakidou, M., S. et al 2016: Past, Present and Future Atmospheric Nitrogen Deposition. J. Atmos. Sci. doi:10.1175/JAS-D-15-0278.1, in press.

  21. • Almost a 3-fold increase over land (2-fold over the ocean) of TN from 1850 to present. • Significant changes in the regional distribution of N deposition and chemical composition, with reduced compounds gaining importance relative to oxidized ones, but very small changes in the global total flux. Kanakidou, M., S. et al 2016: Past, Present and Future Atmospheric Nitrogen Deposition. J. Atmos. Sci. doi:10.1175/JAS-D-15-0278.1, in press.

  22. Satelite information a valuable tool for global Nr estimates DJF MAM NH 3 JJA SON Luo, M. et al., 2015. Satellite observations of tropospheric ammonia and carbon monoxide: Global distributions, regional correlations and comparisons to model simulations. Atmospheric Environment 106 (2015) 262-277.

  23. Satelite information a valuable tool for global Nr estimates DJF MAM CO JJA SON Luo, M. et al., 2015. Satellite observations of tropospheric ammonia and carbon monoxide: Global distributions, regional correlations and comparisons to model simulations. Atmospheric Environment 106 (2015) 262-277.

  24. Partitioning NH 3 sources NH 3 /CO Luo, M. et al., 2015. Satellite observations of tropospheric ammonia and carbon monoxide: Global distributions, regional correlations and comparisons to model simulations. Atmospheric Environment 106 (2015) 262-277.

  25. Partitioning N r sources P=Power plant T=Transport I=Industry D=Domestic F=Fertilizer use L=Livestock H=Human waste N=Natural emissions Zhao, Y. et al., 2015.Atmospheric nitrogen deposition to the northwestern Pacific: seasonal variation and source attribution. Atmos. Chem. Phys., 15, 10905 – 10924.

  26. Ground based N r monitoring Vet, R. et al (2014). A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus. Atmospheric Environment 93. 3-100.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend