asymptotic m5 brane entropy from s duality
play

Asymptotic M5-brane entropy from S-duality Nahmgoong June Seoul - PowerPoint PPT Presentation

Asymptotic M5-brane entropy from S-duality Nahmgoong June Seoul National University KIAS, December 16, 2016 Tallk based on: S.Kim and J.Nahmgoong [work in progress] 1/14 6d (0,2) SCFT Worldvolume theory of coincident N M5-branes 6d


  1. Asymptotic M5-brane entropy from S-duality Nahmgoong June Seoul National University KIAS, December 16, 2016 ◮ Tallk based on: S.Kim and J.Nahmgoong [work in progress] 1/14

  2. 6d (0,2) SCFT ◮ Worldvolume theory of coincident N M5-branes → 6d (0,2) A N − 1 SCFT – Entropy ∝ N 3 – No known Lagrangian description ◮ Reducing 6d over S 1 : 5d N = 2 SYM + instanton (KK mode) – M-theory circle X 1 ∼ X 1 + 2 πR 1 – Hypermultiplet mass m : N = 2 → N = 1 ∗ ◮ Separating M5 branes: Coulomb phase U ( N ) → U (1) N – Giving VEV to 5d vector multiplet ( A µ , φ 6 , 7 , 8 , 9 , 10 ) – � φ 6 � = diag ( a 1 , ..., a N ) , � φ 7 ,..., 10 � = 0 2/14

  3. 5d N = 1 ∗ SYM ◮ BPS objects of 5d SYM in Coulomb phase – W-boson: F1 connected between two D4s – Instanton: D0 bounded on a D4 ◮ They form 1/4 BPS states counted by partition function ◮ Reducing 5d over temporal S 1 : Ω -background – Temporal circle X 0 ∼ X 0 + 2 πR 0 w 1 , 2 ∼ e − ǫ 1+ ǫ 2 – Twisting parameter ǫ 1 , 2 : z 1 , 2 ∼ e ǫ 1 , 2 z 1 , 2 , w 1 , 2 2 z 1 , 2 ∈ C 2 � = R 4 � ( X 2 , 3 , 4 , 5 ) , w 1 , 2 ∈ C 2 ⊥ = R 4 ⊥ ( X 7 , 8 , 9 , 10 ) 1 – Effective volume of the system V ∼ ǫ 1 ǫ 2 3/14

  4. 5d N = 1 ∗ partition function: I ◮ Partition function Z = Z pert · Z inst ◮ Instanton partition function ∞ � Z k ( a, m, ǫ 1 , 2 ) q k , q = e 2 πiτ Z inst ( τ, a, m, ǫ 1 , 2 ) = 1 + k =1 N � � � ( − 1) F q k e − β { Q,Q † } e − 2 ǫ + ( J 1 R + J 2 R ) e − 2 ǫ − J 1 L e − 2 mJ 2 L e − 2 a i Π i Z k = Tr i =1 – m, ǫ 1 , 2 : Chemical potentials on T 2 ( R 5 , 1 → R 4 × T 2 ) – a i : Coulomb VEV – τ : Complex structure of T 2 , complex gauge coupling in 5d = i 4 πR 0 τ = i R 0 g 2 R 1 Y M – q : instanton number fugacity – Z k : Witten index of 5d SYM on R 4 , 1 4/14

  5. 5d N = 1 ∗ partition function: II ◮ Instaton partition function – Z k : computed from D0-D4 ADHM QM k � Z k = 1 � dφ I � � Z vec ( φ, a, ǫ 1 , 2 ) · Z adj ( φ, a, m, ǫ 1 , 2 ) k ! 2 πi JK I =1 – φ I = − 2 πiτ ( A 1 I + iA t I ) : Complexified gauge holonomy – Contour: Jefferey-Kirwan residue – Z vec/adj : Gaussian path integral over massive modes · 2 sinh φ IJ +2 ǫ + 2 sinh φ IJ 1 � � 2 2 Z vec = · 2 sinh φ IJ + ǫ 1 · 2 sinh φ IJ + ǫ 2 2 sinh φ I − a i ± ǫ + I,J I,i 2 2 2 2 sinh φ IJ ± m − ǫ − 2 sinh φ I − a i ± m � � 2 Z adj = 2 sinh φ IJ ± m − ǫ + 2 I,J I,i 2 ◮ Perturbative partition function: Only W-boson contribution sinh m + ǫ + sinh m − ǫ + � 1 e α · a � � 2 2 Z pert ( a, m, ǫ 1 , 2 ) = PE sinh ǫ 1 2 sinh ǫ 2 2 2 α ∈ root 5/14

  6. Prepotential ◮ We consider the limit ǫ 1 , 2 → 0 � − F ( τ, a, m ) � + O ( ǫ 0 Z ( τ, a, m, ǫ 1 , 2 ) = exp 1 , 2 ) ǫ 1 ǫ 2 ◮ Prepotential F – Effective action of Coulomb branch – Classical part + quantum corrections (pertuabative / instanton) F tot = πiτa 2 i + F, F = F pert + F inst ◮ Ω -background parameter ǫ 1 , 2 dependence is removed in prepotential. – Easier then partition function to treat 6/14

  7. S-duality ◮ We compactified 6d (0,2) theory on R 4 × T 2 ◮ S-duality: Interchanging radii of M-theory circle ( R 1 ) ↔ temporal circle ( R 0 ) τ D = − 1 τ = i R 0 τ D = i R 1 , → R 1 R 0 τ ◮ S-dual transform of chemical potentials m D = m 1 , 2 = ǫ 1 , 2 ǫ D τ , τ ◮ S-duality of 4d N = 2 ∗ prepotential: Legendre transform 1 1 � � 1 F 4d tot ( τ D , a D , m D ) = F 4d tot ( τ, a, m ) − a i ∂ i F 4d a D 2 πiτ ∂ i F 4d , i = tot tot ǫ D 1 ǫ D ǫ 1 ǫ 2 2 � 4 πiτ ( ∂ i F 4d ) 2 � F 4d ( τ D , a D , m D ) = 1 1 1 F 4d ( τ, a, m ) + 2 πiτ ∂ i F 4d a D , i = a i + τ 2 ◮ S-duality of 5d prepotential? – Suspected to be Legendre transform. – Perturbative check is impossible: F D cannot be expanded in q – Test using Modular anomaly equation 7/14

  8. Modular anomaly equation ◮ τ dependence of F : q -series – Eisenstein series E 2 n can be used as a basis for q -series ∞ q k 2 � k 2 n − 1 E 2 n ( τ ) = 1 + 1 − q k ζ (1 − 2 n ) k =1 4 n + 2 2 ζ (1 − 2 n ) q 2 + O ( q 3 ) = 1 + ζ (1 − 2 n ) q + – E 2 n> 2 ’s are exact-modular. Only E 2 is quasi-modular E 2 ( τ D ) = τ 2 � 6 � E 2 n> 2 ( τ D ) = τ 2 n E 2 n ( τ ) , E 2 ( τ ) + πiτ ◮ S-duality is determined by E 2 dependence: Modular anomaly equation → ∂F 4d � 4 πiτ ( ∂ i F 4d ) 2 � ( F 4d ) D = 1 1 = − 1 F 4d + 24 ( ∂ i F 4d ) 2 ← τ 2 ∂E 2 ◮ By checking E 2 dependence of 5d prepotential, we can reconstruct its S-duality transform 8/14

  9. 5d N = 1 ∗ prepotential: I ◮ Partition function � � 1 + Z 1 q + Z 2 q 2 + O ( q 3 ) Z = Z pert ◮ 5d N = 1 ∗ prepotential is given in series of q � Li 3 ( e a ij ) − 1 � � 2 Li 3 ( e a ij ± m ) F = 1 · i,j 1 − sinh 2 m � � + q · 4 sinh 2 m � � 2 T i where T i = sinh 2 a ij 2 i j � = i 2 � 8 sinh 4 a ij + 12 sinh 2 a ij − 4 sinh 2 m sinh 6 ( m � + q 2 · 2 2 2 2 ) T i T j sinh 2 a ij 2 sinh 2 a ij ± m i,j 2 � + sinh 2 ( m � 6 + 2 sinh 2 m � � i + 4 sinh 4 ( m � T i T (2) T 2 + O ( q 3 ) 2 ) 2 ) i 2 i i ◮ E 2 dependence is not obviously seen. ◮ We expand F in series of m , and resum over q 9/14

  10. 5d N = 1 ∗ prepotential: II ◮ We expand F in series of m , F = − m 2 � 1 Li 1 ( e a ij ) + N ( q + 3 � � 2 q 2 + ... ) 2 i,j − m 4 1 − 24 q − 72 q 2 + ... � � Li − 1 ( e a ij ) − N � 24 12 i,j � 1 − 48 q + 432 q 2 + ... − m 6 2304 1 + sinh 2 a ij � 1 2 + cosh a ij �� cosh a ik a kj � � + cosh �� � 2 2 2 2 × + sinh 4 a ij 2 sinh a ij sinh 3 a ik sinh 3 a kj 2 2 2 2 i,j i,j,k + 1 + 240 q + 2160 q 2 + ... 11520 ��� 1 − sinh 2 a ij � 1 2 + cosh a ij �� cosh a ik a kj + cosh � � � 2 2 2 2 − 5 × sinh 4 a ij 2 sinh a ij sinh 3 a ik sinh 3 a kj 2 2 2 i,j i,j,k 2 + O ( m 8 ) 10/14

  11. 5d N = 1 ∗ prepotential: II ◮ We expand F in series of m , and resum over q F = − m 2 � 1 � − m 4 E 2 � � Li − 1 ( e a ij ) − N � � Li 1 ( e a ij ) − N ln φ ( q ) 2 24 12 i,j i,j � 1 + sinh 2 a ij � 1 2 + cosh a ij �� cosh a ik a kj E 2 � � + cosh �� � − m 6 2 2 2 2 2 + sinh 4 a ij 2 sinh a ij sinh 3 a ik sinh 3 a kj 2304 2 2 2 i,j i,j,k 2 ��� 1 − sinh 2 a ij � 1 2 + cosh a ij �� cosh a ik a kj � � + cosh E 4 � 2 2 2 2 + − 5 sinh 4 a ij 2 sinh a ij sinh 3 a ik sinh 3 a kj 11520 2 2 2 2 i,j i,j,k checked up to q 3 for generic N , q 4 for N = 2 + O ( m 8 ) ◮ m 2 n +2 order: quasi-modular form with weight 2 n m 4 : E 2 , m 6 : E 2 m 8 : E 3 m 10 : E 4 2 , E 2 2 E 4 , E 2 E 6 , E 2 2 , E 4 , 2 , E 2 E 4 , E 6 , 4 – Only E 2 , E 4 , E 6 are independent – The number of combinations are finite → Resumming q -series into Eisenstein series can be done uniquely 11/14

  12. S-duality of 5d N = 1 ∗ prepotential ◮ m 2 order, F = − m 2 � 1 � − m 4 E 2 � � Li − 1 ( e α · a ) − N � � Li 1 ( e α · a ) − N ln φ ( q ) + ... 2 24 12 α α ◮ Euler totient function φ ( q ) ∞ − iτ − πi ( τ D − τ ) √ � (1 − q n ) = q − 1 ln φ D = ln φ + ln 24 η ( q ) φ ( q ) = → 12 n =1 ◮ E 2 dependence of F 24 ( ∂ i F ) 2 + m 4 N 3 ∂F = − 1 checked up to m 6 for generic N , m 10 for N = 2 ∂E 2 288 ◮ S-duality of the 5d N = 1 ∗ prepotential F � � πi ( τ − τ D ) N 3 � � F D = 1 1 i 4 πiτ ( ∂ i F ) 2 + m 4 48 πiτ + m 2 N F + + ln τ 2 12 τ 12/14

  13. Asymptotic entropy: I ◮ S-duality of the 5d prepotential F � � πi ( τ − τ D ) N 3 F D = 1 � 1 i � 4 πiτ ( ∂ i F ) 2 + m 4 48 πiτ + m 2 N F + + ln τ 2 12 τ ◮ Strong coupling for τ D ← → Weak coupling for τ q D = e 2 πiτ D = 1 − τ D = i · 0 + , q = 0 + τ = i · ∞ , ← → ◮ Weak coupling prepotential ≃ Perturbative prepotential F ≃ F pert ◮ Leading terms are Coulomb VEV independent � � N 3 m 4 + N 2 m 3 F D ≃ − 1 πi D D + Nm 2 D τ D 48 πi 12 12 � 1 1 2 Li 4 ( e Nm D ) + 1 � 2 Li 4 ( e − Nm D ) − Li 4 (1) = Nπiτ D ���� 0 < Im [ m D ] < 2 π N ◮ Polynomial expression is valid for small m D . For a generic value of m D , the expression is continuated to tetra-logarithm. 13/14

  14. Asymptotic entropy: II ◮ Asymptotic entropy of N M5-branes � 1 1 2 Li 4 ( e Nm ) + 1 � F 2 Li 4 ( e − Nm ) − Li 4 (1) τ = i · 0 + ≃ , ǫ 1 ǫ 2 Nπiǫ 1 ǫ 2 τ ◮ Imaginary m : Periodicity m ∼ m + i 2 π N N , m D = 2 πiτ D m = i 2 π e Nm D = q D : Phase transition point → N ◮ Real m : N 3 scaling N 3 � m � m iπ 3 � � 4 � 2 � F ≃ − N ǫ 1 ǫ 2 3 ǫ 1 ǫ 2 τ 2 π 2 π 14/14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend