arithmetic and differential swan conductors the rank one
play

Arithmetic and Differential Swan conductors. The Rank one case via - PowerPoint PPT Presentation

Arithmetic and Differential Swan conductors. The Rank one case via -exponentials. Andrea Pulita (Joint work with B.Chiarellotto ) Cetraro, 2007 October 8 SUMMARY Arithmetic Swan conductor Katos definition in the non perfect case


  1. Arithmetic and Differential Swan conductors. The Rank one case via π -exponentials. Andrea Pulita (Joint work with B.Chiarellotto ) Cetraro, 2007 October 8

  2. SUMMARY • Arithmetic Swan conductor – Kato’s definition in the non perfect case • Differential Swan conductor – Kedlaya’s definition in the non perfect case • Co-monomials and explicit description of H 1 ( k ( ) , Q p / Z p ) ( t ) • π − exponentials as solutions of Differential equations – Explicit computation of the monodromy functor in the rank one case  • Decomposition in pure co-monomials    Proof : • Radius of the differential equation    attached to a pure co-monomial

  3. � � � � � � � � � � NOTATIONS K :=finite extension of Q p , F q :=residue field of K , k :=field containing F q , E :=c.d.v.f. with residue field k , O L 0 :=a Cohen ring of k , O E L 0 :=a Cohen ring of E O L := O L 0 ⊗ W ( F q ) O K , O E L := O L ⊗ O L 0 O E L 0 � O L � O E L . O K = O Z p W ( F q ) O E L 0 O L 0 � F q � k � E ∼ F p = k ( ( t ) ) • E ∼ = k ( ( t ) ) (once we have chosen an uniformizer element t ) = { � a i T i | lim i →−∞ a i = 0 , ∀ i | a i | ≤ 1 , a i ∈ L (0) } • O E L (0) ∼ (Amice-Fontaine ring)

  4. NOTATIONS • A L ( I ) = { � + ∞ −∞ a i T i , s.t. lim i →±∞ | a i | ρ i =0 , ∀ ρ ∈ I } (= Analytic Funct. on the annulus | T | ∈ I ) • R L := � ε> 0 A L (]1 − ε, 1[) (= Robba ring) • E † L,T = E † L := R L ∩ E L (= Bounded Robba ring). • ϕ :=Lifting of the Frobenius x �→ x q • G E := Gal(E sep / E), I E :=inertia, P E :=wild inertia • Rep fin O K (G E ) = { α : G E → GL ( V ) | V = finite free O K − module, such that α ( I E ) is finite }

  5. FONTAINE’s EQUIVALENCE: THE PERFECT CASE • Assume k =perfect. • (Fontaine-Tsuzuki’s) classical case (1998): D † : Rep fin ∼ O K (G E ) − − − → ( ϕ, ∇ ) − Mod( O E † L / O L ) where: L / O L ) := { (D , ϕ D , ∇ ) | D := finite free / O E † • ( ϕ, ∇ ) − Mod( O E † L , ϕ D : D → D is ϕ -semilinear ∇ : D → D ⊗ Ω 1 / O L connection } O E† L Note: If t =uniformizer of E ∼ = k ( ( t ) ), T =lifting of t in O E † L , then ∼ ∼ Ω 1 D ⊗ Ω 1 O E † L · dT , D · dT = = O E† / O L O E† / O L L L the data of ∇ : D → D ⊗ Ω 1 / O L is equivalent to a connection O E† L ∇ T : D → D .

  6. FONTAINE’s EQUIVALENCE REVISITED: THE NON PERFECT CASE • Assume k =arbitrary. • Kedlaya’s generalization (December 2006): D † : Rep fin ∼ O K (G E ) − − − → ( ϕ, ∇ ) − Mod( O E † L / O K ) where: L ) := { (D , ϕ D , ∇ ) | with D := finite free / O E † • ( ϕ, ∇ ) − Mod( O E † L , ϕ D : D → D is ϕ -semilinear ∇ : D → D ⊗ Ω 1 / O K integrable } O E† L • If t =uniformizer of E ∼ = k ( ( t ) ), if { ¯ u 1 , . . . , ¯ u r } = p -basis of k , T, u 1 , . . . , u r ∈ O E † L are lifting of t, ¯ u 1 , . . . , ¯ u r , then � � ∼ Ω 1 O E † L · dT ⊕ ⊕ i =1 ,...,r O E † L · du i . = O E† / O K L

  7. The data of ∇ : D → D ⊗ Ω 1 / O K is equivalent to a family of O E† L connections ∇ T : D → D ∇ u 1 : D → D ∇ u 2 : D → D · · · · · · · · · ∇ u r : D → D commuting with ϕ , and commuting between them. • Note: If k is perfect, then Ω 1 / O L = Ω 1 / O K , hence this O E† O E† L L theory refines that of Fontaine-Tsuzuki. • We are interested only to these differential equations. We set L / O K ) = { (D , ∇ ) | ∇ : D → D ⊗ Ω 1 MCF( O E † / O K , + commutations , O E† L with an (unspecified) Frobenius ϕ D : ϕ ∗ (D) → D }

  8. � � � � � Perfect case VS non perfect case Assume k non necessarily perfect. We notice that ∼ can � Gal( k ( ) sep /k ( Gal( k perf ( ) sep /k perf ( ( t ) ( t ) )) ( t ) ( t ) )) ∪ ∪ ∼ I k perf ( I k ( ( t ) ) ( t ) ) can hence: � � � � can Rep fin Rep fin Gal( k perf ( ) sep /k perf ( ) sep /k ( ( t ) ( t ) )) Gal( k ( ( t ) ( t ) )) O K O K ∼ ≀ ⊙ ≀ D † D † can ( ϕ, ∇ ) − Mod( O E † L perf / O L perf ) ( ϕ, ∇ ) − Mod( O E † L / O K ) ∼ where the last horizontal functor is given by L perf , ϕ D ⊗ ϕ, ∇ T ⊗ 1) (D , ϕ D , ∇ T , {∇ u i } i ) �− → (D ⊗ O E† L O E †

  9. List of main results D † : Rep fin ∼ O K (G E ) − − − → ( ϕ, ∇ ) − Mod( O E † L / O K ) • On the left hand side: One has a complete description of H 1 (G E , Q / Z ) p − tor = H 1 (G E , Q p / Z p ) (Pulita 2006). • On the right hand side: We obtain a complete description of the group Pic Frob ( O E † L ) =group, under tensor product, of isomorphism classes of rank one objects in MCF( O E † L / O K ). ∼ • After choosing an identification ( Q p / Z p ) ⊃ ( Z /p n Z ) → µ p ∞ ( O K ) we make explicit the isomorphism ∼ Hom fin (G E , Q p / Z p ) ⊃ Hom fin (G E , ( O K ) × ) p -tor → Pic Frob ( O E † − L ) p -tor , induced by the functor D † (Pulita 2006). • Understanding of the Kato’s filtration on the L.H.S., and of the Kedlaya’s Irregularity on the R.H.S. proof of the equality (Kato) Swan Arithm = Swan Diff (Kedlaya) .

  10. � � � � � � � Abbes-Saito’s filtration in rank one case: Kato’s filtration The Artin-Schreier-Witt theory describes H 1 (G E , Q p / Z p ): ¯ F − 1 δ 0 → Z /p m +1 Z Hom(G E , Z /p m +1 Z ) → 0 W m (E) W m (E)  ı ⊙ ⊙ ⊙ V V F − 1 � W m +1 (E) ¯ δ � Hom(G E , Z /p m +2 Z ) → 0 � W m +1 (E) 0 → Z /p m +2 Z ↓ ↓ ↓ ¯ F − 1 δ → Hom cont (G E , Q p / Z p ) → 0 0 → Q p / Z p − → CW (E) − − − → CW (E) − where � � V V CW (E) = lim W m (E) − → W m +1 (E) − → · · · , − → m and where Hom cont means that a character α : G E → Q p / Z p factorizes by a finite quotient of G E . Note : Elements in CW (E) are ( · · · , 0 , 0 , f 0 , . . . , f m ) , f i ∈ E.

  11. Abbes-Saito’s filtration in rank one case: Kato’s filtration • K.Kato (1989) defined a filtration on H 1 (G E , Q / Z ) in 3 steps: 1) The setting v ( · · · , 0 , 0 , f 0 , . . . , f m ) := min( v t ( f 0 ) /p m , v t ( f 1 ) /p m − 1 , · · · , v t ( f m )) defines a valuation on CW (E). Define a filtration on CW (E) as: Fil d ( CW (E)) = { c := ( · · · , 0 , 0 , f 0 , . . . , f m ) | v ( c ) ≥ − d } . 2) Thank to the A-S-W sequence ¯ F − 1 δ → H 1 (G E , Q p / Z p ) → 0 . 0 → Q p / Z p → CW (E) − − − → CW (E) − Fil d (H 1 (G E , Q p / Z p )) := δ (Fil d ( CW (E))) . we define: Hom cont (G E , Q / Z ) ⊕ ℓ =prime Hom cont (G E , Q ℓ / Z ℓ ) 3) = ⇒ Fil d (H 1 (G E , Q / Z )) Inverse image of Fil d (H 1 (G E , Q p / Z p )) . = := � � d ≥ 0 | α ∈ Fil d (H 1 (G E , Q / Z )) Swan Arithm ( α ) = min 4)

  12. Description of the Kato’s filtration of H 1 (G E , Q p / Z p ) • Once chosen a uniformizer element t ∈ E, one has E ∼ = k ( ( t ) ) and )) = CW ( t − 1 k [ t − 1 ]) ⊕ CW ( k ) ⊕ CW ( tk [ CW ( k ( ( t ) [ t ] ]) • One has CW (E) ∼ H 1 (E , Q p / Z p ) = (¯ F − 1)( CW (E)) H 1 (G k , Q p / Z p ) � �� � CW ( t − 1 k [ t − 1 ]) CW ( k ) = F − 1)( CW ( t − 1 k [ t − 1 ])) ⊕ F − 1)( CW ( k )) . (¯ (¯  CW ( t − 1 k [ t − 1 ]) = Pontriagyn dual of P G ab  (¯ F − 1)( CW ( t − 1 k [ t − 1 ]))  E     CW ( k ) (G ab = Pontriagyn dual of k ) p -tor   (¯ F − 1)( CW ( k ))    H 1 (G k , Q p / Z p )  =

  13. Description of the Kato’s filtration of CW (E) Definition (Pulita 2006): A co-monomial of degree − d is a co-vector of the form λ t − d := ( · · · , 0 , 0 , λ 0 t − n , λ 1 t − np , . . . , λ m t − np m ) ∈ CW ( k ( ( t ) )) where d = np m , ( n, p ) = 1, λ := ( λ 0 , . . . , λ m ) ∈ W m ( k ). We call CW ( − d ) ( k ) the sub-group of CW (E) formed by such elements. Proposition: CW (E) together with the Kato’s filtration is graduated: CW (E) := ⊕ d ≥ 0 Gr d ( CW (E)) . Moreover:  CW ( k [ [ t ] ]) if d = 0 ,    Gr d ( CW (E)) =   CW ( − d ) ( k )  if d > 0 .

  14. � � � � Note: For all char. p ring R (not necessarily with unit el.t) one has CW ( R ) � � ¯ ¯ F F F − 1)( CW ( R )) = lim CW ( R ) − → CW ( R ) − → · · · (¯ − → • Hence we are interested to the action of ¯ F . Gr 0 ( CW (E)) is a sub-¯ F-module, while ¯ F( CW ( − d ) ( k )) CW ( − pd ) ( k ) , ⊂ in fact ¯ F → ( · · · , 0 , 0 , λ p ( · · · , 0 , 0 , λ 0 t − n , . . . , λ m t − d ) 0 t − pn , . . . , λ p m t − pd ) �− • If d = np m , ( n, p ) = 1, one has a isomorphism: ∼ � ( λ 0 , . . . , λm ) CW ( − d )( k ) � W m ( k ) ( · · · , 0 , 0 , λ 0 t − n, . . . , λmt − d ) V¯ ¯ ¯ · p F= p F F ∼ � (0 , λp 0 , . . . , λp ( · · · , 0 , 0 , λp 0 t − pn, . . . , λp CW ( − pd )( k ) � W m +1( k ) mt − pd ) m )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend