aqueous durability of glasses new approaches
play

Aqueous Durability of Glasses New Approaches Thorsten - PowerPoint PPT Presentation

Aqueous Durability of Glasses New Approaches Thorsten Geisler(-Wierwille) Steinmann Institute , University of Bonn, Germany int ICTP-IAEA Workshop Triest (6.11.-10.11.2017) tgeisler@uni-bon int ICTP-IAEA Workshop Triest


  1. Aqueous Durability of Glasses – New Approaches Thorsten Geisler(-Wierwille) Steinmann Institute , University of Bonn, Germany int ICTP-IAEA Workshop – Triest (6.11.-10.11.2017) tgeisler@uni-bon

  2. int ICTP-IAEA Workshop – Triest (6.11.-10.11.2017) tgeisler@uni-bon

  3. Observations: Corrosion kinetics from Gin et al. (20 int ICTP-IAEA Workshop – Triest (6.11.-10.11.2017) tgeisler@uni-bon

  4. Glass corrosion mechanisms SOLUTION PRISTINE GLASS SOLUTION Na H 2 O SOLUTION Re-structured residual glass Na PRI H 2 O after Grambow (1986) , Frugier et al. (2008) after Geisler et al. (2010; 201 int ICTP-IAEA Workshop – Triest (6.11.-10.11.2017) tgeisler@uni-bon

  5. Observations – Patterned corrosion zones from nature int ICTP-IAEA Workshop – Triest (6.11.-10.11.2017) tgeisler@uni-bon

  6. Observations – Patterned corrosion zones from experiments Dohmen et al. (2013) int ICTP-IAEA Workshop – Triest (6.11.-10.11.2017) tgeisler@uni-bon

  7. Motivation Limitations of and problems with the present experimental methodologies • Glass-water reactions are commonly studied experimentally by ex-situ analysing the experimental solution and/or reaction products, i.e., after the reaction has taken place. • Limitations and problems of such an ex-situ approach are… • short-time and small changes in the reaction kinetics are difficult to record • quenching, drying, and physical sectioning may cause: • phase precipitation • structural and chemical changes of the reaction products • physical cracking int ICTP-IAEA Workshop – Triest (6.11.-10.11.2017) tgeisler@uni-bon

  8. Motivation Limitations of and problems with the present experimental methodologies It follows that information about the dynamics of the structural and chemical evolution of the corrosion laye is not directly accessible . However, … “a ¡process ¡cannot ¡be ¡understood ¡by ¡stopping ¡it. ¡ Understanding ¡must ¡move ¡with ¡the ¡8low ¡of ¡the ¡process, ¡must ¡join ¡it ¡and ¡8low ¡with ¡it.” ¡ — ¡Frank ¡Herbert, ¡Dune What can we do to overcome such limitations? 1. (Multi-)isotope tracer exchange experiment → isotope coupling or decoupling in space and time gives information about the dynamics of individual reactions. 2. I n-situ experiments → following the reaction in real-time without disturbing it. int ICTP-IAEA Workshop – Triest (6.11.-10.11.2017) tgeisler@uni-bon

  9. In-situ experiments Currently established in situ techniques only probe surface reactions (e.g., atomic force microscopy or interferometry) Solution Reaction interface Alteration phase(s) Glass int ICTP-IAEA Workshop – Triest (6.11.-10.11.2017) tgeisler@uni-bon

  10. Experimental details Confocal Raman spectroscopy allows overcoming such limitations Thermocouple ¡ Objec%ve ¡ wires ¡ Solu%on ¡ ¡ 100x ¡LWD ¡ outlet ¡ (N.A. ¡= ¡0.8) ¡ ¡ Fused silica window Sample Confocal focus Solution Thermocouple Filament ¡hea%ng ¡ Electrodes ¡for ¡ Solu%on ¡ ¡ impedance ¡ ¡ T = 70 and 90°C, 26 to 240 h inlet ¡ spectroscopy ¡ Schema'c ¡Raman ¡fluid ¡cell ¡setup ¡ Raman ¡fluid ¡cell ¡setup ¡ int ICTP-IAEA Workshop – Triest (6.11.-10.11.2017) tgeisler@uni-bon

  11. Experimental details Glass samples ¡ 100 ¡S iO 2 ¡B 2 O 3 90 ¡A l 2 O 3 80 ¡Na 2 O ¡C aO 70 ¡F raction ¡(mol.% ) ¡Z rO 2 60 ¡O thers 50 ¡ 40 30 20 10 0 T B G C aNaG IS G Q B G int ICTP-IAEA Workshop – Triest (6.11.-10.11.2017) tgeisler@uni-bon

  12. Experimental details Heavy ion irradiation at the GSI Helmholtz Center in Darmstadt, Germany Sample chamber 4.8 MeV 197 Au + ions were used to irradiate the TBG with a flux of 5 x 10 12 ions/cm 2 Schematic view of the accelerator in Darmstadt Experimental hall II int ICTP-IAEA Workshop – Triest (6.11.-10.11.2017) tgeisler@uni-bon

  13. Experimental details Structural effects of heavy ion irradiation (TBG) ¡ ¡ 50 Irradiated ¡g las s 45 12 ¡A g ¡ions /cm 2 ) Depolymerization ( 5 x 10 of the SiO 4 40 Q 3 network ¡Intens ity ¡(arb. ¡unit) Q 4 F raction ¡(% ) 35 Q 1 Q 2 B O 3 ¡units ¡in 30 R boroxol ¡rings ¡ 630 25 O 2 20 15 Non-­‑irradiated ¡g las s 10 400 600 800 1000 1200 1400 1600 Q 1 Q 2 Q 3 Q 4 -­‑1 ) n ¡s peciation R aman ¡s hift ¡(cm Q int ICTP-IAEA Workshop – Triest (6.11.-10.11.2017) tgeisler@uni-bon

  14. Experimental details Measuring glass retreat and spatial resolution ¡ ¡ P os ition ¡of ¡the ¡ water-­‑glas s ¡ 1.0 S i-­‑O -­‑S i S i-­‑O -­‑NB O interface bending s tretching 0.9 A 400-­‑800 ¡(normaliz ed ¡intens ity) Metaborate rings 0.8 Δ lateral = ¡Intens ity ¡(arb. ¡unit) Q 3 0.7 8 – 25 µ m 0.6 Q 4 ¡ Glass R Q 1 Q 2 0.5 retreat ¡ 0.5 ¡h 630 0.4 B O 3 ¡ units ¡in 2.6 ¡h boroxol ¡rings 3.7 ¡h 0.3 9.0 ¡h O 2 0.2 P os ition ¡of ¡ reaction ¡front TBG Non-­‑irradiated ¡g lass 0.1 after ¡9 ¡h 0.0 400 600 800 1000 1200 1400 1600 -­‑40 -­‑20 0 20 40 60 80 -­‑1 ) D is tance ¡(µm) R aman ¡s hift ¡(cm int ICTP-IAEA Workshop – Triest (6.11.-10.11.2017) tgeisler@uni-bon

  15. Experimental details Monitoring the solution pH at any point in space and time pH range The principle: pH = f (A /A ) of interest v 1 (CO 3 2- ) v 5 (HCO 3 - ) ¡ { 2-­‑ ν 1 (C O 3 ) ¡ ¡1 M ¡Na 2 C O 3 ¡Intens ity ¡(arb. ¡unit) ¡ ¡1 M ¡NaH C O 3 ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡s olution Fraction H 2 CO 3 HCO 3 - CO 3 2- -­‑ ν 5 (H C O 3 ) 950 1000 1050 1100 pH Raman shift (cm -1 ) int ICTP-IAEA Workshop – Triest (6.11.-10.11.2017) tgeisler@uni-bon

  16. Experimental details Monitoring the diffusion (and reaction) of molecular water through the rim ¡ 3000 v 1 (D 2 O) 2500 Intens ity ¡(counts ) 2000 v 1 (H 2 O) v 3 (D 2 O) 2v 2 (D 2 O) 1500 v 3 (H 2 O) ¡ 2v 2 (H 2 O) 1000 v s (SiO-D) v s (SiO-H) 500 0 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 -­‑1 ) R aman ¡s hift ¡(cm int ICTP-IAEA Workshop – Triest (6.11.-10.11.2017) tgeisler@uni-bon

  17. Experimental details Experiments Experiment #1 – TBG , 70°C, 0.1 M HCl (pH 70° = 1.0) → Gap formation and silica aging Experiment #2 - TBG, 90°C, 0.5M NaHCO 3 (pH 90°C = 7.2) → pH gradient in a solution boundary layer Experiment #3 - CaNaG, 90°C, 0.5 M NaHCO 3 (pH 90°C = 7.2) → Effect of secondary phase formation on pH Experiment #4 – TBG, 90°C, 0.5 M NaHCO 3 (pH 90°C = 7.2), after 140 h injection of D 2 O → pH gradient in solution and corrosion rim and diffusion of water through the rim Experiment(s) #5 – TBG und TBG irradiated , 90°C, 0.5M NaHCO 3 (pH 90°C = 7.2) → Effect of heavy ion irradiation on the forward dissolution rate ( r 0 ) int ICTP-IAEA Workshop – Triest (6.11.-10.11.2017) tgeisler@uni-bon

  18. Results of in-situ experiments Experiment #1 - Gap formation and silica aging ¡ ¡ ¡ Objective 1.0 Silica inner 100x LWD Inc reas ing ¡ surface OH (N.A. = 0.8) 0.8 After Normalis ed ¡intens ity reac tion ¡ time 2 hours 0.6 4-­‑fold Intens ity ¡(arb. ¡unit) Intens ity ¡(arb. ¡unit) rings ¡ 0.4 Borosilicate Laser Raman spectrum of the 0.2 Glass beam >4-­‑fold NaBSi glass rings (532 nm) 0.0 250 300 350 400 450 500 550 600 @ 70°C -­‑1 ) R aman ¡s hift ¡(cm * 0.1 M HCl Solution * * * Thermocouple 10 11 12 13 1 2 3 4 5 6 7 8 9 T = 70°C 3200 3600 4000 400 400 800 800 1200 1200 1600 1600 2000 2000 2400 2400 2800 2800 -­‑1 ) -­‑1 ) -­‑1 ) Experimental setup R aman ¡s hift ¡(cm R aman ¡s hift ¡(cm R aman ¡s hift ¡(cm int ICTP-IAEA Workshop – Triest (6.11.-10.11.2017) tgeisler@uni-bon

  19. Results of in-situ experiments Experiment #1: Gap formation and silica aging Relative fraction of H 2 O Relative fraction of Relative fraction of in the analyzed volume surface Si-OH (SiO) n>4 rings in silica t (h) 3 Glass 7 Area not imaged Area not imaged Area not imaged 10 14 21 Silica 28 36 39 43 57 78 96 114 132 Solution 150 Gap 168 187 205 226 245 Low High 0.08 0.11 0.42 0.74 A 3000-3700 /A 200-1250 A 3560-3620 /A 3000-3750 A 250-460 /A 250-600 25 µ m int ICTP-IAEA Workshop – Triest (6.11.-10.11.2017) tgeisler@uni-bon

  20. Results of in-situ experiments Experiment #1 - Gap formation and silica aging ¡ 0.56 A 3000-3700 /A 200-1250 0.52 Relative fraction 0.48 of H 2 O Silica 0.44 ¡ Glass 0.40 0.36 0.65 A 250-460 /A 250-600 0.60 20 µ m Gap 0.55 Relative fraction of BSE image of altered glass after the experiment 0.50 (SiO) n>4 rings in silica 0.45 0.40 Increasing degree of polymerization Glas retreat ( µ m) 40 A 3560-3620 /A 3000-3750 0.104 35 Relative fraction of 0.102 30 25 surface Si-OH in silica 0.100 20 0.098 ¡ 15 10 0.096 rate = 0.062(12) µ m/h 5 0.094 0 0.092 0 20 40 60 80 100 120 140 160 180 200 220 240 0 20 40 60 80 100 120 140 160 180 200 220 240 T ime ¡(h) ¡T ime ¡(h) ¡ int ICTP-IAEA Workshop – Triest (6.11.-10.11.2017) tgeisler@uni-bon

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend