approaching nsp emd with b splines
play

Approaching NSP-EMD with B-Splines Laslo Hunhold Oberseminar in SS - PowerPoint PPT Presentation

Approaching NSP-EMD with B-Splines Laslo Hunhold Oberseminar in SS 2018 Mathematisches Institut Universitt zu Kln hosted by Prof. Dr. Angela Kunoth 7th June 2018 1 / 14 introduction intrinsic mode function (IMF) (1/2) 2 / 14


  1. Approaching NSP-EMD with B-Splines Laslo Hunhold ‘Oberseminar’ in SS 2018 Mathematisches Institut Universität zu Köln hosted by Prof. Dr. Angela Kunoth 7th June 2018 1 / 14

  2. introduction intrinsic mode function (IMF) (1/2) 2 / 14

  3. introduction intrinsic mode function (IMF) (1/2) definition 2 / 14

  4. introduction intrinsic mode function (IMF) (1/2) definition Let a , φ ∈ C 2 b ( R ) with bounded derivatives. 2 / 14

  5. introduction intrinsic mode function (IMF) (1/2) definition Let a , φ ∈ C 2 b ( R ) with bounded derivatives. a ( t ) cos ( φ ( t )) : ∈ I 2 / 14

  6. introduction intrinsic mode function (IMF) (1/2) definition Let a , φ ∈ C 2 b ( R ) with bounded derivatives. a ( t ) cos ( φ ( t )) : ∈ I is an IMF with accuracy ε ∈ (0 , 1) 2 / 14

  7. introduction intrinsic mode function (IMF) (1/2) definition Let a , φ ∈ C 2 b ( R ) with bounded derivatives. a ( t ) cos ( φ ( t )) : ∈ I is an IMF with accuracy ε ∈ (0 , 1) if and only if for all t ∈ R ◮ a ( t ) > 0, φ ′ ( t ) > 0, 2 / 14

  8. introduction intrinsic mode function (IMF) (1/2) definition Let a , φ ∈ C 2 b ( R ) with bounded derivatives. a ( t ) cos ( φ ( t )) : ∈ I is an IMF with accuracy ε ∈ (0 , 1) if and only if for all t ∈ R ◮ a ( t ) > 0, φ ′ ( t ) > 0, ◮ | a ′ ( t ) | ≤ ε | φ ′ ( t ) | , 2 / 14

  9. introduction intrinsic mode function (IMF) (1/2) definition Let a , φ ∈ C 2 b ( R ) with bounded derivatives. a ( t ) cos ( φ ( t )) : ∈ I is an IMF with accuracy ε ∈ (0 , 1) if and only if for all t ∈ R ◮ a ( t ) > 0, φ ′ ( t ) > 0, ◮ | a ′ ( t ) | ≤ ε | φ ′ ( t ) | , ◮ | φ ′′ ( t ) | ≤ ε | φ ′ ( t ) | . 2 / 14

  10. introduction intrinsic mode function (IMF) (1/2) definition Let a , φ ∈ C 2 b ( R ) with bounded derivatives. a ( t ) cos ( φ ( t )) : ∈ I is an IMF with accuracy ε ∈ (0 , 1) if and only if for all t ∈ R ◮ a ( t ) > 0, φ ′ ( t ) > 0, ◮ | a ′ ( t ) | ≤ ε | φ ′ ( t ) | , ◮ | φ ′′ ( t ) | ≤ ε | φ ′ ( t ) | . heuristic 2 / 14

  11. introduction intrinsic mode function (IMF) (1/2) definition Let a , φ ∈ C 2 b ( R ) with bounded derivatives. a ( t ) cos ( φ ( t )) : ∈ I is an IMF with accuracy ε ∈ (0 , 1) if and only if for all t ∈ R ◮ a ( t ) > 0, φ ′ ( t ) > 0, ◮ | a ′ ( t ) | ≤ ε | φ ′ ( t ) | , ◮ | φ ′′ ( t ) | ≤ ε | φ ′ ( t ) | . heuristic ◮ Physical reasonability. 2 / 14

  12. introduction intrinsic mode function (IMF) (1/2) definition Let a , φ ∈ C 2 b ( R ) with bounded derivatives. a ( t ) cos ( φ ( t )) : ∈ I is an IMF with accuracy ε ∈ (0 , 1) if and only if for all t ∈ R ◮ a ( t ) > 0, φ ′ ( t ) > 0, ◮ | a ′ ( t ) | ≤ ε | φ ′ ( t ) | , ◮ | φ ′′ ( t ) | ≤ ε | φ ′ ( t ) | . heuristic ◮ Physical reasonability. ◮ Slowly varying amplitude. 2 / 14

  13. introduction intrinsic mode function (IMF) (1/2) definition Let a , φ ∈ C 2 b ( R ) with bounded derivatives. a ( t ) cos ( φ ( t )) : ∈ I is an IMF with accuracy ε ∈ (0 , 1) if and only if for all t ∈ R ◮ a ( t ) > 0, φ ′ ( t ) > 0, ◮ | a ′ ( t ) | ≤ ε | φ ′ ( t ) | , ◮ | φ ′′ ( t ) | ≤ ε | φ ′ ( t ) | . heuristic ◮ Physical reasonability. ◮ Slowly varying amplitude. ◮ Slowly varying frequency. 2 / 14

  14. introduction intrinsic mode function (IMF) (2/2) example 3 / 14

  15. introduction intrinsic mode function (IMF) (2/2) example a ( t ) cos ( φ ( t )) a ( t ) φ ( t ) 3 / 14

  16. introduction empirical mode decomposition (EMD) (N.E. Huang et al., 1998) 4 / 14

  17. introduction empirical mode decomposition (EMD) (N.E. Huang et al., 1998) input 4 / 14

  18. introduction empirical mode decomposition (EMD) (N.E. Huang et al., 1998) input signal s : [ p , q ] → R 4 / 14

  19. introduction empirical mode decomposition (EMD) (N.E. Huang et al., 1998) input signal s : [ p , q ] → R decomposition 4 / 14

  20. introduction empirical mode decomposition (EMD) (N.E. Huang et al., 1998) input signal s : [ p , q ] → R decomposition w � s ( t ) = s k ( t ) + r w +1 ( t ) , s k ∈ I k =0 s k ( t ) = a k ( t ) cos ( φ k ( t )) 4 / 14

  21. introduction empirical mode decomposition (EMD) (N.E. Huang et al., 1998) input signal s : [ p , q ] → R decomposition w � s ( t ) = s k ( t ) + r w +1 ( t ) , s k ∈ I k =0 s k ( t ) = a k ( t ) cos ( φ k ( t )) iterative 4 / 14

  22. introduction empirical mode decomposition (EMD) (N.E. Huang et al., 1998) input signal s : [ p , q ] → R decomposition w � s ( t ) = s k ( t ) + r w +1 ( t ) , s k ∈ I k =0 s k ( t ) = a k ( t ) cos ( φ k ( t )) iterative r 0 ( t ) = s ( t ) r k +1 ( t ) = r k ( t ) − s k ( t ) 4 / 14

  23. introduction empirical mode decomposition (EMD) (N.E. Huang et al., 1998) input signal s : [ p , q ] → R decomposition w � s ( t ) = s k ( t ) + r w +1 ( t ) , s k ∈ I k =0 s k ( t ) = a k ( t ) cos ( φ k ( t )) iterative r 0 ( t ) = s ( t ) r k +1 ( t ) = r k ( t ) − s k ( t ) goal 4 / 14

  24. introduction empirical mode decomposition (EMD) (N.E. Huang et al., 1998) input signal s : [ p , q ] → R decomposition w � s ( t ) = s k ( t ) + r w +1 ( t ) , s k ∈ I k =0 s k ( t ) = a k ( t ) cos ( φ k ( t )) iterative r 0 ( t ) = s ( t ) r k +1 ( t ) = r k ( t ) − s k ( t ) goal Find a k and φ k . 4 / 14

  25. introduction operator-based signal separation (OSS) (S. Peng et al., 2008) (1/2) 5 / 14

  26. introduction operator-based signal separation (OSS) (S. Peng et al., 2008) (1/2) idea 5 / 14

  27. introduction operator-based signal separation (OSS) (S. Peng et al., 2008) (1/2) idea Let P k = P k ( a k , φ k ), Q k = Q k ( a k , φ k ), R k = R k ( a k , φ k ). 5 / 14

  28. introduction operator-based signal separation (OSS) (S. Peng et al., 2008) (1/2) idea Let P k = P k ( a k , φ k ), Q k = Q k ( a k , φ k ), R k = R k ( a k , φ k ). Find differential operator D P k , Q k , R k analytically such that D P k , Q k , R k s k = 0 . 5 / 14

  29. introduction operator-based signal separation (OSS) (S. Peng et al., 2008) (1/2) idea Let P k = P k ( a k , φ k ), Q k = Q k ( a k , φ k ), R k = R k ( a k , φ k ). Find differential operator D P k , Q k , R k analytically such that D P k , Q k , R k s k = 0 . Solve ( P k , Q k , R k ) = arg min �Q 1 ( r k − ˜ s ) � (˜ P , ˜ Q , ˜ R ) s.t. D ˜ R ˜ s = 0 P , ˜ Q , ˜ �Q 2 ˜ P � ≤ τ �Q 3 ˜ Q � ≤ τ �Q 4 ˜ R � ≤ τ with τ > 0, Q 1 , Q 2 , Q 3 , Q 4 ∈ { D 0 , D 1 , . . . } regularization operators, ˜ a , ˜ φ ), ˜ a , ˜ φ ), ˜ a , ˜ P := P k (˜ Q := Q k (˜ R := R k (˜ φ ) and a ( t ) cos (˜ ˜ s := ˜ φ ( t )). 5 / 14

  30. introduction operator-based signal separation (OSS) (S. Peng et al., 2008) (2/2) 6 / 14

  31. introduction operator-based signal separation (OSS) (S. Peng et al., 2008) (2/2) unconstrained formulation 6 / 14

  32. introduction operator-based signal separation (OSS) (S. Peng et al., 2008) (2/2) unconstrained formulation ( P k , Q k , R k ) = arg min �D ˜ R ˜ s � + P , ˜ Q , ˜ (˜ P , ˜ Q , ˜ R ) λ �Q 1 ( r k − ˜ s ) � + µ ( �Q 2 ˜ P � + �Q 3 ˜ Q � + �Q 4 ˜ R � ) 6 / 14

  33. introduction operator-based signal separation (OSS) (S. Peng et al., 2008) (2/2) unconstrained formulation ( P k , Q k , R k ) = arg min �D ˜ R ˜ s � + P , ˜ Q , ˜ (˜ P , ˜ Q , ˜ R ) λ �Q 1 ( r k − ˜ s ) � + µ ( �Q 2 ˜ P � + �Q 3 ˜ Q � + �Q 4 ˜ R � ) problem 6 / 14

  34. introduction operator-based signal separation (OSS) (S. Peng et al., 2008) (2/2) unconstrained formulation ( P k , Q k , R k ) = arg min �D ˜ R ˜ s � + P , ˜ Q , ˜ (˜ P , ˜ Q , ˜ R ) λ �Q 1 ( r k − ˜ s ) � + µ ( �Q 2 ˜ P � + �Q 3 ˜ Q � + �Q 4 ˜ R � ) problem Want to control ˜ s , and thus s k , in some way. 6 / 14

  35. introduction null space pursuit (NSP) (S. Peng, W.-L. Hwang et al., 2010) 7 / 14

  36. introduction null space pursuit (NSP) (S. Peng, W.-L. Hwang et al., 2010) solution 7 / 14

  37. introduction null space pursuit (NSP) (S. Peng, W.-L. Hwang et al., 2010) solution Introduce leakage factor γ . 7 / 14

  38. introduction null space pursuit (NSP) (S. Peng, W.-L. Hwang et al., 2010) solution Introduce leakage factor γ . ( P k , Q k , R k ) = arg min �D ˜ R ˜ s � + P , ˜ Q , ˜ (˜ P , ˜ Q , ˜ R ) λ ( �Q 1 ( r k − ˜ s ) � + γ � ˜ s � )+ µ ( �Q 2 ˜ P � + �Q 3 ˜ Q � + �Q 4 ˜ R � ) 7 / 14

  39. introduction null space pursuit (NSP) (S. Peng, W.-L. Hwang et al., 2010) solution Introduce leakage factor γ . ( P k , Q k , R k ) = arg min �D ˜ R ˜ s � + P , ˜ Q , ˜ (˜ P , ˜ Q , ˜ R ) λ ( �Q 1 ( r k − ˜ s ) � + γ � ˜ s � )+ µ ( �Q 2 ˜ P � + �Q 3 ˜ Q � + �Q 4 ˜ R � ) Controls retainment of information in residual signal. 7 / 14

  40. introduction null space pursuit (NSP) (S. Peng, W.-L. Hwang et al., 2010) solution Introduce leakage factor γ . ( P k , Q k , R k ) = arg min �D ˜ R ˜ s � + P , ˜ Q , ˜ (˜ P , ˜ Q , ˜ R ) λ ( �Q 1 ( r k − ˜ s ) � + γ � ˜ s � )+ µ ( �Q 2 ˜ P � + �Q 3 ˜ Q � + �Q 4 ˜ R � ) Controls retainment of information in residual signal. remaining problems (OSS, NSP) 7 / 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend