antimatter from supernova remnants
play

Antimatter from Supernova Remnants Michael Kachelrie NTNU, - PowerPoint PPT Presentation

Antimatter from Supernova Remnants Michael Kachelrie NTNU, Trondheim with S. Ostapchenko, R. Tom` as PAMELA anomaly )) 0.4 - (e 0.3 )+ + (e 0.2 ) / ( + (e Positron fraction 0.1 Muller & Tang 1987 MASS 1989


  1. Antimatter from Supernova Remnants Michael Kachelrieß NTNU, Trondheim with S. Ostapchenko, R. Tom` as

  2. PAMELA anomaly )) 0.4 - (e φ 0.3 )+ + (e 0.2 φ ) / ( + (e φ Positron fraction 0.1 Muller & Tang 1987 MASS 1989 TS93 HEAT94+95 CAPRICE94 AMS98 HEAT00 0.02 Clem & Evenson 2007 PAMELA 0.01 0.1 1 10 100 Energy (GeV) Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 2 / 18

  3. Astrophysical sources for anti-matter: CR secondaries standard secenario for Galactic CRs: ◮ sources are SNRs: kinetic energy output of SNe: 10 M ⊙ ejected with v ∼ 5 × 10 8 cm/s every 30 yr ⇒ L SN , kin ∼ 3 × 10 42 erg/s ◮ explains local energy density of CR ǫ CR ∼ 1 eV/cm 3 for a escape time from disc τ esc ∼ 6 × 10 6 yr Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 3 / 18

  4. Astrophysical sources for anti-matter: CR secondaries standard secenario for Galactic CRs: ◮ sources are SNRs: kinetic energy output of SNe: 10 M ⊙ ejected with v ∼ 5 × 10 8 cm/s every 30 yr ⇒ L SN , kin ∼ 3 × 10 42 erg/s ◮ explains local energy density of CR ǫ CR ∼ 1 eV/cm 3 for a escape time from disc τ esc ∼ 6 × 10 6 yr ◮ 1.order Fermi shock acceleration ⇒ dN/dE ∝ E − γ with γ = 2 . 0 − 2 . 2 ◮ diffusion with D ( E ) ∝ τ esc ( E ) ∼ E − δ and δ ∼ 0 . 5 explains observed spectrum E − 2 . 6 Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 3 / 18

  5. Astrophysical sources for anti-matter: CR secondaries standard secenario for Galactic CRs: ◮ sources are SNRs: kinetic energy output of SNe: 10 M ⊙ ejected with v ∼ 5 × 10 8 cm/s every 30 yr ⇒ L SN , kin ∼ 3 × 10 42 erg/s ◮ explains local energy density of CR ǫ CR ∼ 1 eV/cm 3 for a escape time from disc τ esc ∼ 6 × 10 6 yr ◮ 1.order Fermi shock acceleration ⇒ dN/dE ∝ E − γ with γ = 2 . 0 − 2 . 2 ◮ diffusion with D ( E ) ∝ τ esc ( E ) ∼ E − δ and δ ∼ 0 . 5 explains observed spectrum E − 2 . 6 electrons, positrons: τ loss ≪ τ esc and τ loss ∝ 1 /E Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 3 / 18

  6. Astrophysical sources for anti-matter: CR secondaries standard secenario for Galactic CRs: ◮ sources are SNRs: kinetic energy output of SNe: 10 M ⊙ ejected with v ∼ 5 × 10 8 cm/s every 30 yr ⇒ L SN , kin ∼ 3 × 10 42 erg/s ◮ explains local energy density of CR ǫ CR ∼ 1 eV/cm 3 for a escape time from disc τ esc ∼ 6 × 10 6 yr ◮ 1.order Fermi shock acceleration ⇒ dN/dE ∝ E − γ with γ = 2 . 0 − 2 . 2 ◮ diffusion with D ( E ) ∝ τ esc ( E ) ∼ E − δ and δ ∼ 0 . 5 explains observed spectrum E − 2 . 6 electrons, positrons: τ loss ≪ τ esc and τ loss ∝ 1 /E electrons dN − /dE ∝ E − γ − 1 positrons dN + /dE ∝ E − γ − δ − 1 Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 3 / 18

  7. Astrophysical sources for anti-matter: CR secondaries standard secenario for Galactic CRs: ◮ sources are SNRs: kinetic energy output of SNe: 10 M ⊙ ejected with v ∼ 5 × 10 8 cm/s every 30 yr ⇒ L SN , kin ∼ 3 × 10 42 erg/s ◮ explains local energy density of CR ǫ CR ∼ 1 eV/cm 3 for a escape time from disc τ esc ∼ 6 × 10 6 yr ◮ 1.order Fermi shock acceleration ⇒ dN/dE ∝ E − γ with γ = 2 . 0 − 2 . 2 ◮ diffusion with D ( E ) ∝ τ esc ( E ) ∼ E − δ and δ ∼ 0 . 5 explains observed spectrum E − 2 . 6 electrons, positrons: τ loss ≪ τ esc and τ loss ∝ 1 /E electrons dN − /dE ∝ E − γ − 1 positrons dN + /dE ∝ E − γ − δ − 1 ⇒ ratio n + ∝ E − δ n − ⇒ CR secondaries can not explain increasing positron fraction Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 3 / 18

  8. Possible explanations for the PAMELA anomaly: Astrophysics: as primaries from ◮ pulsars ◮ supernova remnants (SNR) Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 4 / 18

  9. Possible explanations for the PAMELA anomaly: Astrophysics: as primaries from ◮ pulsars ◮ supernova remnants (SNR) Dark matter ◮ requires large boost factors ∼ 100 ⋆ Sommerfeld enhancement ⋆ dense, cold clumps Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 4 / 18

  10. Possible explanations for the PAMELA anomaly: Astrophysics: as primaries from ◮ pulsars ◮ supernova remnants (SNR) Dark matter ◮ requires large boost factors ∼ 100 ⋆ Sommerfeld enhancement ⋆ dense, cold clumps ◮ “exclusive” coupling to leptons Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 4 / 18

  11. Supernova remnants Astrophysical explanations II: SNR [ P. Blasi ’09 ] N CR ( E ) ≫ N e ( E ) for energies E ≫ m p in acceleration region Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 5 / 18

  12. Supernova remnants Astrophysical explanations II: SNR [ P. Blasi ’09 ] N CR ( E ) ≫ N e ( E ) for energies E ≫ m p in acceleration region significant e ± production by CRs even for small τ pp in source Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 5 / 18

  13. Supernova remnants Astrophysical explanations II: SNR [ P. Blasi ’09 ] N CR ( E ) ≫ N e ( E ) for energies E ≫ m p in acceleration region significant e ± production by CRs even for small τ pp in source secondary e ± are accelerated, spectra becomes harder Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 5 / 18

  14. Supernova remnants Astrophysical explanations II: SNR [ P. Blasi ’09 ] N CR ( E ) ≫ N e ( E ) for energies E ≫ m p in acceleration region significant e ± production by CRs even for small τ pp in source secondary e ± are accelerated, spectra becomes harder several important implications for CR physics: ⇒ increase of ¯ p/p , B/C, . . . Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 5 / 18

  15. Supernova remnants Positron ratio from SNR: [ Blasi ’09 ] Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 6 / 18

  16. Supernova remnants Antiproton ratio from SNR: [ Blasi, Serpico ’09 ] 0.001 Bohm-like ISM ISM+B term Total -/p 0.0001 p A term B term 1e-05 10 100 1000 Kinetic Energy, T [GeV] Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 7 / 18

  17. Supernova remnants Antiproton ratio from SNR: Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 7 / 18

  18. Supernova remnants Antiproton ratio from SNR: [ Blasi, Serpico ’09 ] J ¯ p,SNRs ( E ) ≃ 2 n 1 c [ A ( E ) + B ( E )] J p ( E ) where � E � E max � 1 � dω ω γ − 3 D 1 ( ω ) d E E 2 − γ σ p ¯ ξ + r 2 A ( E ) = γ × p ( E , ω ) , u 2 m ω 1 and � E max B ( E ) = τ SNR r d E E 2 − γ σ p ¯ p ( E , E ) . 2 E 2 − γ E Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 8 / 18

  19. Supernova remnants Antiproton ratio from SNR: [ Blasi, Serpico ’09 ] J ¯ p,SNRs ( E ) ≃ 2 n 1 c [ A ( E ) + B ( E )] J p ( E ) where � E � E max � 1 � dω ω γ − 3 D 1 ( ω ) d E E 2 − γ σ p ¯ ξ + r 2 A ( E ) = γ × p ( E , ω ) , u 2 m ω 1 and � E max B ( E ) = τ SNR r d E E 2 − γ σ p ¯ p ( E , E ) . 2 E 2 − γ E A increases for large D and small u ⇒ old SNR Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 8 / 18

  20. Supernova remnants Antiproton ratio from SNR: [ Blasi, Serpico ’09 ] J ¯ p,SNRs ( E ) ≃ 2 n 1 c [ A ( E ) + B ( E )] J p ( E ) where � E � E max � 1 � dω ω γ − 3 D 1 ( ω ) d E E 2 − γ σ p ¯ ξ + r 2 A ( E ) = γ × p ( E , ω ) , u 2 m ω 1 and � E max B ( E ) = τ SNR r d E E 2 − γ σ p ¯ p ( E , E ) . 2 E 2 − γ E A increases for large D and small u ⇒ old SNR constraints: t acc ∝ D ( E ) /u 2 < ∼ τ SNR and D ( E ) /u 2 ≪ u 1 τ SNR Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 8 / 18

  21. Supernova remnants Advantage of a Monte Carlo framework: you don’t need to think Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 9 / 18

  22. Supernova remnants Advantage of a Monte Carlo framework: you don’t need to think – easy to include: time-dependence of v sh , D, . . . Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 9 / 18

  23. Supernova remnants Advantage of a Monte Carlo framework: you don’t need to think – easy to include: time-dependence of v sh , D, . . . interactions: production of multi-particle states Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 9 / 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend