anomaly induced thermodynamics in higher dimensional ads
play

Anomaly-induced Thermodynamics in Higher Dimensional AdS/CFT Gim - PowerPoint PPT Presentation

Anomaly-induced Thermodynamics in Higher Dimensional AdS/CFT Gim Seng Ng McGill University Northeast Gravity Workshop, 23rd April 2016 Based on : 1311.2940, 1407.6364 and 1505.02816 (with T. Azeyanagi, R. Loganayagam and M. J. Rodriguez)


  1. Anomaly-induced Thermodynamics in Higher Dimensional AdS/CFT Gim Seng Ng McGill University Northeast Gravity Workshop, 23rd April 2016

  2. Based on : 1311.2940, 1407.6364 and 1505.02816 
 (with T. Azeyanagi, R. Loganayagam and M. J. Rodriguez)

  3. Motivations BHs have entropy ! Entropy-matching … Often extremal or/and susy… How about non-extremal/ non-SUSY finite temperature entropy matching? BTZ entropy is reproduced by the universal Cardy’s formula Higher-dimensional generalizations of Cardy’s formula? Higher-dimensional AdS/CFT “Cardy entropy-matching”?

  4. Outline Chiral Half of Cardy’s Formula in ��� 2 n Replacement Rule from ��� 2 n + 1 ���� 2 n

  5. chiral half of Cardy Consider a 2d CFT on a circle of radius R Let us put it at finite temperature and rotation/boost At high temperature: T � 1 / R Time 2 πR 2 Ω 2 πR � c R + c L � c R − c L � � S Cardy ≈ ( 4 πT ) ( 4 πT ) + 1 − R 2 Ω 2 1 − R 2 Ω 2 24 24 R Weyl Anomaly Gravitational Anomaly (``Chiral Half’’/anomalous-part)

  6. chiral HALF of Cardy 2 πR 2 Ω � c R − c L � S CFT 2 , anom ≈ ( 4 πT ) 1 − R 2 Ω 2 24 Generalizations to higher-d CFT (on sphere) Replacement rule [Surowka, Loganayagam, Jensen, Yarom,…] To understand the replacement rule, we need to review the following two things: T=0 anomalies Anomalous hydrodynamics

  7. ANOMAL Y INFLOW [Callan and Harvey] Anomalies are captured by Chern-Simons terms Append an extra auxiliary direction. I CS The (2n+1) theory is anomaly-free, but with Chern-Simons terms Non-conservation of the (2n)-theory is captured by the ``inflow’’ of charges into the extra auxiliary direction: � μ J μ | QFT 2 n � j ⊥ j ⊥ j ⊥ ∼ �� P anom P anom = dI CS � F QFT 2 n P anom �� � ���������� �� F ��� R

  8. ���������� ������ anomalous hydro Hydro: effective long-wavelength description: �������� ���������� { u α , T , μ , . . . } � � A α , g αβ , . . . Hydro derivative expansion: J α = qu α + . . . +( J α ) anom + . . . � � T αβ = Eu α u β + p g αβ + u α u β + . . . +( T αβ ) anom + . . . Leading anomalous contribution: V α � ε αβ ... u β ( � u ) n − 1 parity-odd vorticity : ...

  9. ����� anomalous hydro J α = qu α + . . . +( J α ) anom + . . . � � T αβ = Eu α u β + p g αβ + u α u β + . . . +( T αβ ) anom + . . . ( J α ) anom = − ∂ F [ T , μ ] V α + . . . ∂ μ � � � ∂ F � � ∂ F � � � ( T αβ ) anom = F − μ − T u α V β + V α u β + . . . ∂ μ ∂ T T μ � � F � � � F � � � CFT V μ dx μ = − � ( 2 πR 2 Ω i ) S anom = − � T � T μ μ i is like an anomalous Gibbs free energy F Recall that standard relations: Q = − ∂ G � ∂ G � ∂ G � ∂ G � � � E = G − μ − T S = − ∂ μ , ∂ μ ∂ T ∂ T , μ μ T

  10. ����� anomalous hydro ( J α ) anom = − ∂ F [ T , μ ] V α + . . . ∂ μ � � � ∂ F � � ∂ F � � � ( T αβ ) anom = F − μ − T u α V β + V α u β + . . . ∂ μ ∂ T μ T � � F � � � F � � � CFT V μ dx μ = − � ( 2 πR 2 Ω i ) S anom = − � T � T μ μ i Question: What is ? F

  11. chiral HALF of Cardy Example: 2d CFT Cardy’s formula � c R − c L � S CFT 2 , anom ≈ 2 πR 2 Ω ( 4 πT ) 24 S anom = − ∂ F ∂ T ( 2 πR 2 Ω ) F = − c R − c L 2 ( 2 π ) 242 ( 2 πT ) 2 = c g �� [ R 2 ] � � trR 2 → 2 ( 2 πT ) 2 anomaly polynomial for 2d grav. anomaly

  12. ����� Replacement rule OR chiral half of cardy’s formula [Surowka, Loganayagam, Jensen, Yarom,…] V α � ε αβ ... u β ( � u ) n − 1 ( J α ) anom = − ∂ F [ T , μ ] V α + . . . ∂ μ � � � ∂ F � � ∂ F � � � ( T αβ ) anom = F − μ − T u α V β + V α u β + . . . ∂ μ ∂ T T μ � � F � � � F � � � CFT V μ dx μ = − � ( 2 πR 2 Ω i ) S anom = − � T � T μ μ i F = P anom [ F , R ] | F → μ , �� [ R 2 k ] → 2 ( 2 πT ) 2 k

  13. ����� REPLACEMENT RULE 2d: P anom = c A F 2 + c g �� [ R 2 ] , F = c A μ 2 + c g 2 ( 2 πT ) 2 4d: P anom = c A F 3 + c M F �� [ R 2 ] , F = c A μ 3 + c M μ × 2 ( 2 πT ) 2 6d: P anom � c g �� [ R 4 ] , F = c g 2 ( 2 πT ) 4 ( J α ) anom = − ∂ F [ T , μ ] V α + . . . ∂ μ � � � ∂ F � � ∂ F � � � ( T αβ ) anom = F − μ − T u α V β + V α u β + . . . ∂ μ ∂ T T μ � � F � � � F � � � CFT V μ dx μ = − � ( 2 πR 2 Ω i ) S anom = − � T � T μ μ i

  14. Outline Chiral Half of Cardy’s Formula in ��� 2 n Replacement Rule from 
 ��� 2 n + 1 ���� 2 n - Testing AdS/CFT in the presence of anomalies 
 - What bulk geometric structure captures the 
 replacement rule?

  15. A holographer ’s recipe 1. Find your favorite AdS bulk theories Issue 1: Need gauge-gravitational Chern-Simons terms 2. Find the relevant AdS BH solutions Issue 2: Need AdS-Kerr-Newman+CS solutions 
 (with all rotations/charges turned on) 3. Calculate responses, charges, thermodynamics… Issue 3: Holographic renormalization/charges / entropy for Chern-Simons terms 4. Match/predict CFT results

  16. step 1: favorite Ads gravity setup Toy model: D=2n+1 Einstein-Maxwell+negative c.c. 
 +CS terms Ics Equations of motion: R ab − 1 � � 2 ( R − 2Λ ) g ab = 8 πG N ( T M ) ab + ( T H ) ab � b F ab = g 2 YM ( J H ) a ( T M ) ab Maxwell contribution: CS/``Hall’’ contributions: � � P anom � J H = − � � F � � P anom � ( T H ) ab = � c Σ ( ab ) c Σ ( ab ) c = − 2 � P anom = dI CS � R ab

  17. step 2: fluid/gravity BH solution (no anomalies) Gravity dual of charged rotating fluid 
 (for now, without anomalies) ds 2 = − 2 u μ dx μ dr + r 2 � dx μ dx ν + ��� ����� � − f ( r , m , q ) u μ u ν + P μν A = Φ ( r , q ) u μ dx μ + ��� ����� P μν = g μν + u μ u ν Non-trivial bulk radial dependence: q q 2 f ( r , m , q ) = 1 − m r 2 n + 1 Φ ( r , q ) = 2 κ q r 2 n − 2 r 2 ( 2 n − 1 ) Horizon values: Φ T ( r ) ≡ r 2 df Φ ( r H ) = μ , Φ T ( r H ) = 2 πT 2 dr

  18. step 2: fluid/gravity BH solution (with anomalies) Gravity dual of anomalous charged rotating fluid ds 2 = − 2 u μ dx μ dr + r 2 � dx μ dx ν + ��� ����� � − f ( r , m , q ) u μ u ν + P μν + g V ( r , m , q )( u μ V ν + u ν V μ ) dx μ dx ν + . . . A = Φ ( r , q ) u μ dx μ + ��� ����� R ab − 1 2 ( R − 2Λ ) g ab = 8 πG N � ( T M ) ab + ( T H ) ab � + a V ( r , m , q ) V μ dx μ + . . . � b F ab = g 2 YM ( J H ) a g V , a V Leading contributions from the CS-terms : 
 Bulk replacement rule: � ∂ G � ∂ G � Φ T ( r ) ≡ r 2 � df T H ∼ ∂ 2 J H ∼ ∂ r 2 dr r ∂ Φ ∂ Φ T � � F → Φ , �� [ R 2 k ] → 2Φ 2 k G ≡ P anom T

  19. step 3&4: currents and replacement rule Bulk replacement rule metric corrections boundary stress-tensor/currents G − Φ ∂ G ∂ G � � � � � � � � T αβ T ���������� ∂ Φ − Φ T u α V β + u β V α anom = anom = αβ ∂ Φ T r = r H � ∂ G � ( J α ) anom ∼ g μα ( F rμ ) anom | �������� = − V α ∂ Φ r = r H G ( r = r H ) = F [ F → μ , �� [ R 2 k ] → 2 ( 2 πT ) 2 k ] Bulk replacement rule-> boundary replacement rule !!

  20. ����� ������� step 3&4: entropy Tachikawa Formula (see also Solodukhin and Bonora-Cvitan-Prester-Pallua-Smolic) 
 (note: NOT Wald’s formula applied to Ics) ∞ ∂ P anom � ( 8 πk ) Γ N R 2 k − 2 � S CS = N ∂ �� [ R 2 k ] k = 1 P anom = dI cs , Γ N , R N = ������ ������ �������������������� Applying this to the fluid/gravity metric we found gives � � F � � � F � � � CFT V μ dx μ = − � ( 2 πR 2 Ω i ) S anom = − � T � T μ μ i Computations are opaque, long and tedious … 
 (what bulk structures imply the replacement for entropy?)

  21. summary, current and future work Higher-dimensional chiral-half of Cardy’s formula 
 (Replacement rule) Construct (anomalous) fluid/gravity solutions in the bulk for the Einstein-Maxwell-CS theory Found ``bulk replacement rule’’ which implies the boundary replacement rule Current/Future: Time-dependence (non-stationary) and/or higher-order? More realistic AdS/CFT setup … add matter and etc 
 (should not alter the conclusions) Anomaly-induced entanglement entropy [Azeyanagi-Loganayagam-Ng, 1507.02298]

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend