anisotropic long range spin systems
play

Anisotropic Long Range Spin Systems Nicol` o Defenu Scuola - PowerPoint PPT Presentation

Anisotropic Long Range Spin Systems Nicol` o Defenu Scuola Internazionale Superiore di Studi Avanzati, Trieste (Italy). ndefenu@sissa.it July 26, 2016 Nicol` o Defenu (SISSA) Functional RG July 26, 2016 1 / 21 Overview Long Range


  1. Anisotropic Long Range Spin Systems Nicol` o Defenu Scuola Internazionale Superiore di Studi Avanzati, Trieste (Italy). ndefenu@sissa.it July 26, 2016 Nicol` o Defenu (SISSA) Functional RG July 26, 2016 1 / 21

  2. Overview Long Range Interactions 1 Spin systems LR Spin Systems 2 Traditional results Controversy Effective Dimension The Anisotropic case 3 Dimensional Analysis Three regimes Effective dimension Critical exponents Nicol` o Defenu (SISSA) Functional RG July 26, 2016 2 / 21

  3. Long range interacting systems. 1 r d + σ Nicol` o Defenu (SISSA) Functional RG July 26, 2016 3 / 21

  4. Spin Systems. Why spin systems spin systems are the testbed of statistical mechanics. Various Monte Carlo (MC) and perturbative results available. Diverse interesting physical problems in a single formalism. Issues: Phase diagram for diverse interaction shapes. Description of different symmetry groups. Description of high order critical points. Nicol` o Defenu (SISSA) Functional RG July 26, 2016 4 / 21

  5. Spin Systems Lattice Hamiltonian 1 H = − J � | i − j | d + σ S i S j 2 ij Nicol` o Defenu (SISSA) Functional RG July 26, 2016 5 / 21

  6. Spin Systems Lattice Hamiltonian 1 H = − J � | i − j | d + σ S i S j 2 ij Mean Field Propagator � G ( q ) − 1 = J ( q ) = d d x J ( i − j ) e iq · ( i − j ) Nicol` o Defenu (SISSA) Functional RG July 26, 2016 5 / 21

  7. Spin Systems Lattice Hamiltonian 1 H = − J � | i − j | d + σ S i S j 2 ij Mean Field Propagator � G ( q ) − 1 = J ( q ) = d d x J ( i − j ) e iq · ( i − j ) Leading momentum term q → 0 G − 1 ( q ) ∝ q σ lim if σ ≤ 2 q → 0 G − 1 ( q ) ∝ q 2 lim σ > 2 if Nicol` o Defenu (SISSA) Functional RG July 26, 2016 5 / 21

  8. Long range interactions in d dimensions Traditional Results Three regimes: 0 < σ < d / 2 Mean field exponents ( η = 2 − σ and ν = σ − 1 ). d / 2 < σ < 2 Long range exponents ( η ≡ η ( σ ) and ν ≡ ν ( σ )). σ > 2 Short range exponents ( η = η SR and ν = ν SR ). a a M.E. Fisher et al. PRL 29,14 Nicol` o Defenu (SISSA) Functional RG July 26, 2016 6 / 21

  9. Long range interactions in d dimensions Traditional Results Three regimes: 0 < σ < d / 2 Mean field exponents ( η = 2 − σ and ν = σ − 1 ). d / 2 < σ < 2 Long range exponents ( η ≡ η ( σ ) and ν ≡ ν ( σ )). σ > 2 Short range exponents ( η = η SR and ν = ν SR ). a a M.E. Fisher et al. PRL 29,14 Peculiar Long Range Behavior Using ǫ -expansion technique with ǫ = 2 σ − d or 1 / N expansion is possible to calculate the critical exponent η . η = 2 − σ + O ( ǫ 3 ) Exact at any order in ǫ . η = 2 − σ for all σ < 2. Discontinuity in σ = 2. Nicol` o Defenu (SISSA) Functional RG July 26, 2016 6 / 21

  10. 4.0 3.5 d l e i F n a Short Range e M 3.0 d Long Range 2.5 2.0 1.0 1.2 1.4 1.6 1.8 2.0 2.2 σ Removal of the discontinuity Sak’s Results The anomalous dimension cannot be less than η SR , σ < σ ∗ η = 2 − σ σ > σ ∗ η = η SR where σ ∗ = 2 − η SR . No discontinuity is present. Nicol` o Defenu (SISSA) Functional RG July 26, 2016 7 / 21

  11. Removal of the discontinuity Sak’s Results The anomalous dimension cannot be less than η SR , σ < σ ∗ η = 2 − σ σ > σ ∗ η = η SR where σ ∗ = 2 − η SR . No discontinuity is present. System regimes 4.0 3.5 d l e i F n a Short Range e M 3.0 d Long Range 2.5 2.0 1.0 1.2 1.4 1.6 1.8 2.0 2.2 σ Nicol` o Defenu (SISSA) Functional RG July 26, 2016 7 / 21

  12. Monte Carlo Results: Controversy Luijte and Blote a results (2002) seemed to confirm Sak results, but new, more complete, results (2013) b question on Sak validity a E. Luijte & H.W. Blote PRL 89, 025703 b M. Picco, arXiv:1207.1018 VS Figure: MC 2013 Figure: MC 2002 Nicol` o Defenu (SISSA) Functional RG July 26, 2016 8 / 21

  13. Effective Dimension Ginzburg-Landau Free Energy � − Z k ψ ∆ ψ + µψ 2 + g ψ 4 � d d SR x � Φ SR = + · · · � � 2 ψ − Z 2 , k ψ ∆ ψ + µψ 2 + g ψ 4 � σ d d LR x Φ LR = − Z k ψ ∆ + · · · Nicol` o Defenu (SISSA) Functional RG July 26, 2016 9 / 21

  14. Effective Dimension Ginzburg-Landau Free Energy � − Z k ψ ∆ ψ + µψ 2 + g ψ 4 � d d SR x � Φ SR = + · · · � � 2 ψ − Z 2 , k ψ ∆ ψ + µψ 2 + g ψ 4 � σ d d LR x Φ LR = − Z k ψ ∆ + · · · Effective dimension results Z k = Z 2 , k = 1 → d SR = 2 d LR σ Z 2 , k = 1 → d LR = (2 − η SR ) d LR σ Nicol` o Defenu (SISSA) Functional RG July 26, 2016 9 / 21

  15. Qualitative Description I Approximation Level: No anomalous dimension σ : Exact N → ∞ , Correct σ ranges, σ ∗ = 2 d SR = 2 d LR Nicol` o Defenu (SISSA) Functional RG July 26, 2016 10 / 21

  16. Qualitative Description I Approximation Level: No anomalous dimension σ : Exact N → ∞ , Correct σ ranges, σ ∗ = 2 d SR = 2 d LR II Approximation Level: Pure Long range case : Exact N → ∞ , Correct σ ranges, σ ∗ = 2 − η SR d SR = (2 − η SR ) d LR σ Nicol` o Defenu (SISSA) Functional RG July 26, 2016 10 / 21

  17. Qualitative Description I Approximation Level: No anomalous dimension σ : Exact N → ∞ , Correct σ ranges, σ ∗ = 2 d SR = 2 d LR II Approximation Level: Pure Long range case : Exact N → ∞ , Correct σ ranges, σ ∗ = 2 − η SR d SR = (2 − η SR ) d LR σ III Approximation Level: Mixed theory space Competition between Short and Long range fixed points: ✟✟ ❍❍ d SR ✟ ❍ Fixed Points Solutions and Stability | ν LR ( d, σ ) − 2 σ ν SR ( D eff ) | η 2 1 0.01 1 0.008 0 η SR θ − 1 0.004 − 2 0 d 1 d 0 . 8 σ ∗ 0 . 9 σ ∗ σ ∗ 2 σ ∗ 2 σ ∗ 2 2 2 Nicol` o Defenu (SISSA) Functional RG July 26, 2016 10 / 21

  18. Quantitative Results Short Range Corrections Short Range corrections spoil dimensional equivalence. Small every- where but at σ ≃ σ ∗ . Correlation Length Exponent 1.6 1.0 1.5 0.8 1.4 0.6 1 1 1.3 1.10 Ν LR Ν LR 1.05 0.4 1.00 1.2 0.95 0.90 0.2 1.1 0.85 0.80 0.75 1.0 0.0 1.0 1.2 1.4 1.6 1.8 2.0 1.5 1.6 1.7 1.8 1.9 2.0 1.0 1.2 1.4 1.6 1.8 2.0 Σ Σ Nicol` o Defenu (SISSA) Functional RG July 26, 2016 11 / 21

  19. Anisotropic O ( N ) models. Lattice Hamiltonian J � S i S j J ⊥ S i S j � � H = − δ ( r ⊥ , ij ) − δ ( r � , ij ) . r d 1 + σ r d 2 + τ 2 2 i � = j � , ij i � = j ⊥ , ij Nicol` o Defenu (SISSA) Functional RG July 26, 2016 12 / 21

  20. Anisotropic O ( N ) models. Lattice Hamiltonian J � S i S j J ⊥ S i S j � � H = − δ ( r ⊥ , ij ) − δ ( r � , ij ) . r d 1 + σ r d 2 + τ 2 2 i � = j � , ij i � = j ⊥ , ij Mean Field Propagator q → 0 G ( q ) − 1 = lim q → 0 J ( q ) = Z � q σ � + Z ⊥ q τ ⊥ + µ + O ( q 2 ) lim Nicol` o Defenu (SISSA) Functional RG July 26, 2016 12 / 21

  21. Anisotropic O ( N ) models. Lattice Hamiltonian J � S i S j J ⊥ S i S j � � H = − δ ( r ⊥ , ij ) − δ ( r � , ij ) . r d 1 + σ r d 2 + τ 2 2 i � = j � , ij i � = j ⊥ , ij Mean Field Propagator q → 0 G ( q ) − 1 = lim q → 0 J ( q ) = Z � q σ � + Z ⊥ q τ ⊥ + µ + O ( q 2 ) lim Effective field theory − Z � 2 φ ( x )∆ σ/ 2 φ ( x ) − Z � � � � d d x 2 φ ( x )∆ τ/ 2 φ ( x ) + ... + U ( φ ( x )) Nicol` o Defenu (SISSA) Functional RG July 26, 2016 12 / 21

  22. Physical Realizations. Quantum Lattice Hamiltonian σ ( z ) σ ( z ) H = − J i j σ ( x ) � � | i − j | d + σ − h , i 2 i � = j i Nicol` o Defenu (SISSA) Functional RG July 26, 2016 13 / 21

  23. Physical Realizations. Quantum Lattice Hamiltonian σ ( z ) σ ( z ) H = − J i j σ ( x ) � � | i − j | d + σ − h , i 2 i � = j i Mapping between Quantum LR and Anisotropic LR σ i → S i d 1 = d d 2 = z σ = σ τ = 2 . The Quantum LR Ising is obtained for z = 1 Nicol` o Defenu (SISSA) Functional RG July 26, 2016 13 / 21

  24. Critical Behavior Asymptotic propagators − 1 G ( q 1 , q 1 ) ≈ q − σ + η σ 1 ) ≈ q − τ + η τ G (1 , q 2 q − θ G ( q 1 q θ , 1) 1 2 2 Correlation Lengths ξ � ≈ | T − T c | − ν 1 ξ ⊥ ≈ | T − T c | − ν 2 , Nicol` o Defenu (SISSA) Functional RG July 26, 2016 14 / 21

  25. Critical Behavior Asymptotic propagators − 1 G ( q 1 , q 1 ) ≈ q − σ + η σ 1 ) ≈ q − τ + η τ G (1 , q 2 q − θ G ( q 1 q θ , 1) 1 2 2 Correlation Lengths ξ � ≈ | T − T c | − ν 1 ξ ⊥ ≈ | T − T c | − ν 2 , Anisotropy index σ − η σ = ν 2 = θ. τ − η τ ν 1 Nicol` o Defenu (SISSA) Functional RG July 26, 2016 14 / 21

  26. Critical Behavior Asymptotic propagators − 1 G ( q 1 , q 1 ) ≈ q − σ + η σ 1 ) ≈ q − τ + η τ G (1 , q 2 q − θ G ( q 1 q θ , 1) 1 2 2 Correlation Lengths ξ � ≈ | T − T c | − ν 1 ξ ⊥ ≈ | T − T c | − ν 2 , Anisotropy index σ − η σ = ν 2 = θ. τ − η τ ν 1 Mean field Results ν 1 = σ − 1 , ν 2 = τ − 1 . η σ = η τ = 0 , Nicol` o Defenu (SISSA) Functional RG July 26, 2016 14 / 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend